

MATHS CURRICULUM POLICY

2021/23

Potter Street Academy

Potter Street Maths Curriculum

Purpose of study

Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject.

Aims

We want pupils at Potter Street:

- to have a good understanding of place value;
- to know by heart number facts such as number bonds, multiplication tables and doubles and halves;
- to use what they know by heart to carry out calculations mentally;
- to calculate accurately and efficiently, both mentally and on paper, drawing on a range of calculation strategies;
- to make sense of 'real life' maths problems and recognise the operations needed to solve them;
- to explain the methods and reasoning using correct mathematical vocabulary.
- to use estimation to judge whether answers are reasonable and have the appropriate strategies;
- to know units for measuring and make sensible estimations for measures, including time, fractions and percentages.
- to explain and make predictions from data in graphs, diagrams, charts and tables;
- to understand the properties of 2D and 3D shapes;

Curriculum

The statutory requirements for the teaching and learning of Mathematics are laid out in the National Curriculum Document (2014) which sets out the expectations for the teaching and learning of vocabulary.

Early Years Foundation Stage

During their first year in school, pupils have opportunities to practise and improve their skills in counting numbers, calculating simple addition and subtraction problems, and to describe shapes, spaces, and measures.

By the end of the year most children will be expected to:

- count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number.
- add and subtract two single-digit numbers and count on or back to find the answer, using quantities and objects
- solve problems, including doubling, halving and sharing
- use everyday language to talk about size, weight, capacity, position, distance, time and money to compare quantities and objects and to solve problems
- recognise, create and describe patterns
- explore characteristics of everyday objects and shapes and use mathematical language to describe them.

Key stage 1

Mathematics teaching in year 1 and 2 will ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This will involve working with numerals, words and the four operations, including the use of practical resources. Teachers will encourage pupils to develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching will involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time money and fractions. By the end of KS1 children should know their 2,5,10 times tables and recall multiplication and division facts confidently. Pupils will be expected to read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at key stage 1.

Lower Key stage 2

Mathematics teaching in year 3 and 4 will ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers, as well as continue to develop their use of practical resources. At this stage, pupils are expected to develop their ability to solve a range of problems, including with simple fractions and decimal place value. Teaching will encourage pupils to draw with increasing accuracy and develop their mathematical reasoning so they can analyse shapes and their properties. They will be taught to use a range of measuring instruments and make connections between measure and number. By the end of year 4, pupils should have memorised their multiplication tables and related division facts up to and including the $12 x$ multiplication table. Pupils should use, read and spell mathematical vocabulary correctly and confidently.

Upper Key stage 2

Mathematics teaching in year 5 and 6 ensures that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio. At this stage, pupils are expected to develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them. By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages. Pupils should use, read, spell and pronounce mathematical vocabulary correctly.

Organisation

Maths should be taught every day; a minimum of 45 to 50 minutes in KS1 and 60 minutes in KS2. Lessons do not have to follow a set pattern; but must include, a 10-minute mental and oral maths and fluency activity could take place at any time of the day. The teaching of timetable facts and number bonds will be daily and could take place at the end of the day, in a morning session or both. An element of Reasoning (this could take the form of verbal reasoning and / or in a written response to feedback in books) should be incorporated into each lesson, as well being taught discreetly. Problem solving, evidenced in books at least once a week, should be incorporated into regular fluency sessions involving discussion and practice, as well as being taught discreetly.

Where possible all children are taught within their own class and stretched through differentiated group work, guided work with a teacher, Teaching Assistant and extra challenges. The class teacher is expected to set four levels of work -3 challenges where children are encouraged to choose their own starting points and move between activities if confident. Additional activities are planned for children working significantly below their peers and have special needs support plan. Within each activity/challenge children are given the opportunity to answer reasoning questions to show they are secure in their understanding. When working with the whole class, teachers will direct questions to children at an appropriate level. On some occasions small groups of children are taken from the class to focus on other aspects of the curriculum or to offer them additional support.

As Pupils' acquisition and command of vocabulary are key to their learning and progress across the whole curriculum, Mathematical vocabulary will be emphasised in all lessons and pupils will be encouraged to explain their calculating methods using accurate mathematical language. Each class is expected to have a maths working wall to show key vocabulary and methods used.

ICT is used to support our teaching and to motivate children's learning. The wide variety of programmes we have available including a subscription to TT Rockstars, and Mathletics are also used to extend and reinforce children's learning.

Progression

Please see:

Appendix A - Maths Progression Document
Appendix B - Progression in Calculation
Appendix C - Medium Term Pace Planners
Appendix D - KPI Assessment Sheets

Planning

We believe children develop a greater understanding and retain facts in their long-term memory when they regularly revisit subject areas. Therefore, we have created plans to include daily revisiting of previous learning and introduce new concepts, as well as revisiting maths topics each term.

The school has a yearly overview to ensure coverage.

The Early Years Foundation Stage planning is based upon the Early Learning Goals using a variety of resources.

All Key Stage 1 and 2 classes have termly pace planners (created by Maths Leaders), allocating weekly topics for new learning and for continuous provision. At the start of each new topic a relevant Picture Maths resource will be used as an introduction to new concepts and vocabulary; it can then be revisited at the end of the unit as consolidation and as a measure of progression and vocabulary retention.

Teachers have access to a variety of planning tools such as White Rose, NCETM, NRICH, Twinkl and Classroom Secrets in order to complete a Short Term Plan. From this, teachers plan weekly according to the needs of their class using PowerPoint and Smart Notebook presentations. These are held on the server which is available in school at all times for monitoring purposes. All planning is shared with other adults in the classroom.

Inclusion

At Purford Green / Potter Street Primary we take account of equal opportunities legislation. We set high expectations for all pupils. We plan differentiated work for our most able pupils designed to stretch them and plan a suitable challenge for pupils who have low levels of prior attainment or come from disadvantaged backgrounds to accelerate progress and narrow the attainment gap. In maths our teachers are aware of the issues related to gender and numeracy learning and consider them in their lessons to allow both boys and girls to have equal access to mathematical learning. Pupils from disadvantaged backgrounds, are monitored and provision adapted to ensure that opportunities are provided to accelerate progress and close any gap in attainment that may be present.

For pupils with Special Educational Needs and disabilities (SEND), lessons are planned to meet their individual needs with support from the Special Needs Coordinator (SENCo) (Please refer to our SEND policy incorporating the School Offer). For pupils who are working at greater depth there may be opportunities to work with specialist staff at our local secondary school through our membership of the Passmores Cooperative Learning Community.

Roles and Responsibilities

The Maths subject leader will:

- Monitor Maths in the school through lesson observations, termly climate walks, work scrutiny, tracking data, children's work, Pupil Voice / Pupil Perception Surveys, teachers' planning and assessments.
- Lead staff meetings and to develop CPD across the school.
- Keep up to date with new developments and inform others.
- Ensure continuity of assessment across the school.
- Be supportive to colleagues and help them improve their teaching of the subject, share own experiences and knowledge.
- Audit and manage resources regularly, providing others with appropriate materials when needed.

The Headteacher will:

- Support and encourage staff and identify good practice.
- Monitor teaching and learning through lesson observations and share findings with Maths subject leader and provide feedback to teachers and support staff.
- Monitor planning and reviews.
- Support staff development through INSET, training courses and other resource provisions.

The Class teacher will:

- Be responsible for teaching Maths as set out in the policy.
- Regularly assess children's work to aid planning.
- Differentiate for class groupings as appropriate.
- Ensure that topic specific vocabulary and resources are available for all children.
- Provide planning, reviews, assessment materials and data when requested by the Headteacher and / or Subject leader.
- Provide examples of children's work on request.
- Continue to work on CPD and adopt new developments, seeking support from the Subject Leader when needed and to accept support from the Subject leader when given.

Assessment

Assessment is regarded as an integral part of teaching and learning and is a continuous process. It is the responsibility of the class teacher to assess all pupils in their class. These assessments inform the planning and teaching and inform target setting and tracking. (See Assessment Policy)

In all classes, teachers are expected to carry out regular assessments and data to be reported to the subject leader.

These are:

- Fortnightly Arithmetic papers
- Termly Reasoning and Arithmetic papers (NTS)
- Fortnightly soundchecks on TT Rockstars

Short term assessments are informal and feed into the day to day teaching and planning. The teacher will adapt the planning based on outcomes of lessons and through questions prior to learning. Informal notes may be kept and are often written on plans.

Medium and long term assessments are carried out at different times in the term. Assessments are used to track children's progress and to provide feedback for parents, their next teacher and the school. The on-going teacher assessments, which are supported by any test results, are used to make a judgement about the level a child has reached and to inform the school's assessment system. Arithmetic tests are taken every two weeks to track progress and inform planning. Reasoning tests are taken every half term for the same reason.

Marking: Teachers are to implement the Feedback Marking policy and develop the use of Next Step / bubble time when assessing children's work. Teachers to follow the agreed non-negotiables in Maths books at all times. Children will use pencil only in maths books and coloured pencil when selfassessing. The teacher is to mark work in another colour and to use a highlighted 'bubble' or Next Step symbol to acknowledge responses or to tick / initial responses.

Self-Assessment: Children are encouraged to self-assess their own work at regular intervals. In KS2 children will be given the opportunity to mark some of their work to identify their own mistakes or encouraged to explain how they solved a problem.

Tracking: Teacher Assessments are collected three times a year and analysed by the Senior Leadership Team. This analysis is shared with Governors and informs the School Improvement Plan and subject leader action plans.

Homework: In Maths, from year one upwards, the focus will be on children learning number bonds and multiplication and related division facts, through regular use of TT Rockstars. Homework related to daily lessons will also be set through Mathletics.

Review Date: March 2023

Appendix A

Progression Through Mathematics

Fractions

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Fractions					
Recognise, find and name a $1 / 2$ and $1 / 4$ of an object, shape or quantity to 20	Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 3,3 / 4$ of object, shape or quantity to 100 . Write simple fractions $1 / 2$ of 6=3	Recognise, find, write and use fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominations. Compare and order unit fractions and fractions with same denominator		Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements. Red and write decimal numbers as fractions. Compare and order fractions whose denominators are all multiples of the same number.	Compare and order fractions including fractions $>\mathrm{l}$.
Links to place value and decimals					
		Count up and down in tenths; recognise that tenths arise from dividing one-digit numbers by 10	Round the decimals with one decimal place to the nearest whole number. Find the effects of dividing a one or two-digit number by 10 and 100 , identifying the value of the digits in the answer as one, tenths and hundredths.	Recognise and use thousands, and relate them to tenths, hundredths and decimals equivalents. Read, write, order and compare numbers with up to three decimal places. Round decimals places to the nearest whole number and to one decimal place.	Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places. Multiply one-digit numbers with up two decimal places by whole numbers.

			Count up and down in $100^{\text {th }}$, recognise that $100^{\text {th }}$ arise when dividing. Solve simple measure of money problems involving fractions and decimals to two decimal places. Round decimals with one decimal place to nearest whole number. Compare numbers with the same number of decimal places up to two decimal places.	Solve problems involving number up to three decimal places. Recognise the per cent symbol (\%) and understand that per cent relates to number, of parts per hundred and write percentages as a fraction with denomination 100, and as a decimal. Solve problems which require knowing percentages and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5$, $4 / 5$ and those fractions with a denominator of a multiple of 10 or 25. Identify, name and write equivalent fractions of a given fraction, represented visually including tenths and hundredths.	Use written division methods in cases where the answer has up to two decimal places. Solve problems which require answers to be rounded to specified degrees of accuracy. Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. Use common factors to simplify fractions, use common multiples to express fractions in the same denomination
Equivalences					
	Recognise equivalence of $2 / 4$ and $1 / 2$	Recognise and show, using diagrams, equivalent fractions with small denominators	Recognise and show using diagrams, families of equivalent fractions. Recognise and write decimals equivalent to $1 / 4$, $1 / 2,3 / 4$		Associate a fraction with division and calculate decimal fraction equivalents (for example $0.375)$ for a simple fraction (for example, $3 / 8$)

Problem solving					
		Add and subtract fractions with same denominator. Solve problems using all above	Add and subtract fractions with same denominator. Solve problems involving harder fractions.	Add and subtract fractions with same denominator that are multiples of the same number. Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	Multiply simple pairs of proper fractions, writing the answer in its simplest form (for example, $1 / 4 \times 1 / 2=$ 1/8. Divide proper fractions by whole numbers. Add and subtract with different denominators and mixed numbers using the concept of equivalent fractions.

Property - Geometry

| Year 1 | Year 2 | Year 3 | Year 4 | Year 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Recognise and name
 common 2-D shapes,
 including: Rectangles
 (including squares), circles
 and triangles | Identify and describe the
 properties of 2-D shapes
 including the number of
 sides and line symmetry in
 a vertical line | Recognise 3-D shapes in
 different orientations and
 describe them | Compare and classify
 geometric shapes,
 including quadrilaterals
 and triangles, based on
 their properties and sizes | Identify 3-D shapes,
 including cubes and other
 cuboids, from 2-D
 representations |
| Recognise and name
 common 3-D shapes,
 including: cuboids
 (including cubes), pyramids
 and shapes | Identify and describe the
 properties of 3-D shapes,
 including the number of
 edges, vertices and faces. | Draw 2-D shapes and make
 3-D shapes using modelling
 materials
 including making nets | Distinguish between
 regular and irregular
 polygons based on
 reasoning about equal
 sides and angles | |
| | Identify 2-D shapes on the
 surface of 3-D shapes (for
 example, a circle on a | Identify horizontal and
 vertical lines and pairs of
 perpendicular and parallel
 lines | Use the properties of
 rectangles to deduce
 related facts and find
 missing lengths and angles | Compare and classify
 angles |
| geometric shapes based on | | | | |
| their properties and sizes | | | | |
| and find unknown angles in | | | | |,

	cylinder and a triangle on a pyramid)			any triangles, quadrilaterals and regular polygons	
	Compare and sort common 2-D and 3-D shapes and everyday objects			Identify lines of symmetry in 2-D shapes presented in different orientations	Illustrate and name parts of circles, including radius, diameter and circumference and know that diameter is twice the radius
			Complete a simple symmetric figure with respect to a specific line of symmetry	Identify acute and obtuse angles and compare and order angles up to two right angles by size	Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles
			Recognise angles where they meet at a point, are on a straight line or are vertically opposite and find missing angles		
				Draw given angles and measure them in degrees	

Position and Direction - Geometry

Year 1	Year 2	Year 3	Year 4	Year 5	
		Order and arrange combinations of mathematical objects in patterns and squares			
		Describe positions on a 2-D grid as co-ordinates in the first quadrant Plot specified points and draw sides to complete a given polygon	Describe positions on the full coordinate grid (all four quadrants)		
Describe position, direction and movement, including whole, half, quarter and three-quarter turns	Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three- translations of a given unit to the left/right and up/down and anti-clockwise)	Recognise angles as a property of shape on a description of a turn	Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language and know that the shape has not changed	Draw and translate simple shapes on the coordinate plane and reflect them in axes	

Multiplication and Division

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
See counting/ordering	Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables including recognising odd and even numbers	Recall and use multiplication and division facts for the multiplication tables 3, 4 \& 8	Recall multiplication and division facts for multiplications tables up to 12×12	Multiply and divide numbers mentally drawing upon known facts	Perform mental calculations including with mixed operations and large numbers
			Use place value, known and derived facts to multiple and divide mentally, including: Multiplying by 0 and 1 Dividing by 1 Multiplying together three numbers	Multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000	
				Recognise and use square numbers and cube numbers and the notation for squared (2) and cubed (3)	
			Recognise and use factor pairs and commutativity in mental calculations	Identify multiples and factors, including finding all factor pairs of a number and common factors of two numbers.	Identify common factors, common multiples and prime numbers
				Know and use the vocabulary of prime numbers, prime factors and composite (non-prime numbers) Establish whether a number up to 100 is prime	

				and recall prime numbers up to 19	
	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs. Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot	Write and calculate mathematical statements for multiplication and division using the multiplication tables they know, including 2 digit numbers times 1 digit numbers, using mental and progressing to formal written methods	Multiply two-digit numbers by a one-digit number using formal written layout		Use their knowledge of the order of operations to carry out calculations involving the four operations
				Multiply numbers up to 4 digits by a one or two-digit number using a formal written method, including long multiplication for two-digit numbers	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. Multiply multi-digit numbers up to 4 digits by a two-digits whole number
				Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	Divide numbers up to 4 digits by a two-digit number and interpret remainders as whole number remainders, fractions, or by rounding as appropriate for the context. Divide numbers up to 4 digits by a two-digit whole

					number using the formal written method of long division and interpret remainders as whole number remainders, fractions or by rounding as appropriate for the context
				Solve problems involving multiplication and division including using their knowledge of factors and multiplies, squares and cubes. Solve problems involving multiplications and division, including scaling by simple fractions and problems involving simple rates.	Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
Solve one step problems involving multiplication and division, by concrete objects, pictorial representations and arrays with the support of the teacher	Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts	Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems in which N objects are connected to M objects	Solve problems involving multiplying and adding, including using the distributive law to multiply two-digit, integer scaling problems problems and harder correspondence problems such as n objects are connected to m objects	Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign.	Solve problems involving addition, subtraction, multiplication and division

Counting / Place Value / Ordering

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number			Count in multiples of 6, 7, 9,25 and 1000 Count backwards through zero to including negative numbers	Interpret negative numbers in context, count forwards and backwards with positive and negative whoOle numbers, including through zero	Use negative numbers in context and calculate intervals across aero
Given a number, identify one more and one less	Recognise the place value of each digit in a two-digit number (ones, tens)	Recognise the place value of each digit in a three-digit number (Hundreds, Tens and Ones)	Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens and ones)		
Count, read and write numbers 100 in numerals, count in multiples of twos, fives and tens	Count in steps of 2,3,5 from 0 and tens from any number, forward and backward	Count from 0 in multiples of $4,8,50$ and 100 , find 10 or 100 more or less than a given number	Find 1000 more or less than a given number	Count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than, (fewer), most, least	Identify, represent and estimate numbers using different representations including the number line	Identify, represent and estimate numbers using different representations	Identify, represent and estimate using different representations. Round any number to the nearest 10,100 or 1000	Round any number up to 1,000,000 to the nearest $10,100,1000,10000$	Round any whole number to a required degree of accuracy
Read and write numbers from 1-20 in numerals and words	Read and write numbers at least 100 in numerals and words	Read and write numbers up to 100 in numerals and in words		Read, write, order and compare numbers to at least 1000000 and determine the value of each digit	Read, write, order and compare numbers to at least 1000000 and determine the value of each digit
	Use place value and number facts to solve problems	Solve number problems and practical problems involving these ideas	Solve number and practical problems that involve all of the above and with increasingly large positive numbers	Solve number and practical problems that involve all of the above	Solve number and practical problems that involve all of the above

| | Compare and order
 numbers from O up to $100:$
 use L, Z and $=$ signs | Compare and order
 numbers up to 1000 | Order and compare
 numbers beyond 1000 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | Read Roman numerals to
 100 (I to C) and know that
 over time, the numeral
 system changed to include
 the concept of zero and
 place value | Read Roman numerals to
 1000 (M) and recognise
 years written in Roman
 numerals |

Addition and Subtraction

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Mental and Written skills					
Read write maths symbols $+-=$					
Number bonds and Subtraction facts top 20	Recall, use addition and subtraction facts to 20 and 100 Add and subtract numbers using concrete objects, pictorial representations and mentally, including: A two-digit number, and ones A two-digit number and tens Two two-digit numbers	Add and subtract numbers MENTALLY 3 digits and ones 3 digits and tens 3 digits and hundreds Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	Consolidate year 3 mental skills Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtract where appropriate	Add and subtract whole numbers with more than 4 digits Add and subtract numbers mentally with increasingly large number (example, 12 $462-2300=10162$ Add and subtract whole numbers with more than 4 digits, including using formal written methods	Perform mental calculations, including with mixed operator and large numbers

	Adding three-digit numbers			(column addition and subtraction)	
Solve one step problems with concrete and pictorial representations	Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures Solve problems with addition and subtraction applying the increasing knowledge of mental and with methods	Estimate the answer to a calculation and use inverse operations to check answers	Estimate and use inverse operations to check answer to a calculation	Use rounding to check answers calculations and determine, context of a problem, levels of accuracy	Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
Problems Solving (applying)					
Simple missing numbers $7=$? -9 supported with pictorial and concrete	Show that addition of 2 numbers can be done in any order (commutative) and subtraction of one number from another cannot	Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why?		Solve addition and subtraction multistep problems in contexts deciding which operator and methods to use and why
	Recognise and use the inverse relationship between additional and subtraction and use this to check calculation and solve missing number problems				Use their knowledge of the order of operations to carry out calculations involving the four operations

Measurement

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Time	Recognise and use language relating to dates, including days of the week, weeks, months and years. Sequence events in chronological order using language (for example before and after, next and first, today yesterday, tomorrow, morning, afternoon and evening) Tell the times to the hour and half past the hour and draw the hands on the clock face to show these times.	Know the number of minutes in an hour and number of hours in a day. Tell and write the time to 5 mins, including quarter past/to the hour and draw the hands on the clocks face to show the time. Compare and sequence the intervals of time.	Tell and write the time from an analogue clock a 12 hour and 24 -hour clock. Tell and write the time from an analogue clock, including using roman numerals from I to XII. Compare durations of events (for example to calculate the time taken by particular events or tasks) Use vocabulary such as o'clock am/pm, morning and afternoon, noon and midnight. Know the number of seconds in a minute and number of days in each month, year and leap year. Record and compare time in terms of seconds, minutes and hours.	Read, write and convert time between analogue and digital 12 and 24 -hour clocks. Solve problems involving counting from hours to minutes, minutes to seconds, years to months; weeks to days		

Money	Recognise and know the different dominations of coins and notes	Recognise and use symbols for pounds and pence. Find different combinations of coins that equal to same amounts of money. Combine amounts to make particular value. Solve simple problems in a practical context, involving addition and subtraction of money of the same unit, including giving change	Add and subtract amounts of money to give change using both f and P in practical contexts.	Estimate, compare and calculate different measures, including money in pounds and pence		
Measures	Measure and begin to record the following: Lengths and heights Mass/weight Capacity and volume Time (hours, minutes, seconds)	Choose and use appropriate standard units to estimate and measure to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels: Length/height in any direction (m / cm) Mass (kg/g) Temperature (cxc) Capacity (litres/ml) Compare and order lengths, mass, volume/capacity and	Measure, compare and subtract: Lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$) Mass (kg/g) Volume/Capacity (I/ml)	Convert between different units of measure (for example, kilometre to metre, hour to minute)	Convert between different units of metric measure (for example, $\mathrm{km} / \mathrm{m} / \mathrm{cm}$ $\mathrm{m} / \mathrm{cm} / \mathrm{mm}$ and $\mathrm{g} / \mathrm{kg}-$ $1 / \mathrm{ml}$. Understand and use appropriate equivalences between metric units and common imperial units such as inches, pounds and pints. Understand and use approximate equivalences between metric units and	Convert between miles and kilometres. Use read, write and convert between standard units, converting measurements of lengths, mass volume and time from a smaller unit of measure to a larger unit and vice versa using decimal notification to up to three decimal places.

		record the results using >, < and =			common imperial units	
Shape		Measure the perimeter of simple 2D shapes	Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres)	Measure and calculate the perimeter of composite rectilinear and metres. Calculate and compare the area of rectangles (including squares) and including using standard units, square centimetres (cm2) and square metres (M2) Estimate volume (for example, using 1 cm 3 blocks to build cuboids (including cubes) and capacity (for example, using water)		Recognise that shapes with the same areas can have different perimeters and vice versa. Recognise when it is possible to use formulae for area and volume of shapes. Calculate the area of parallelograms and triangles. Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm3) and cubic metres (m3) and extending to other units (for example, mm3 km3)
Problem solving all 4					Use all four operations to solve problems involving measure (for example, lengths, mass, volume, money)	Solve problems involving the calculations and conversion of units of measure, using decimals notation

| | | | | | using decimal
 notations including
 scaling |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	Solving problems	Representing	Enquiring	Reasoning	Language and Vocabulary
$\begin{aligned} & \mathscr{y} \\ & \stackrel{y}{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	www.nrich.maths.org	NCETM Professional Development Docs.		NCETM Reasoning Progression Document Mastery Document	Picture Maths - at least one discussion lesson to be completed per unit Rising Stars Vocabulary e-book Vocabulary for Teachers
๕	Use developing mathematical, ideas and methods to solve practical problems.	Match sets of objects to numerals that represent the number of objects.	Sort objects, making choices and justifying decisions.	Talk about, recognise and recreate simple patterns.	Describe solutions to practical problems, drawing on experience, talking about their own ideas, methods and choices. Use 'because' sentence stem
	Solve problems involving counting, adding, subtracting, doubling or halving in the context of numbers, measures or money, for example to 'pay' and 'give change'.	Describe a puzzle or problem using numbers, practical materials and diagrams; use these to solve the problem and set the solution in the original context.	Answer a question by selecting and using suitable equipment, and sorting information, shapes or objects; display results using tables and pictures.	Describe simple patterns and relationships involving numbers or shapes; decide whether examples satisfy given conditions.	Describe ways of solving puzzles and problems, explaining choices and decisions orally or using pictures. Use 'because' and 'I know this because...' sentence stems These should be displayed in class
$\begin{aligned} & \text { N } \\ & \frac{1}{2} \\ & \underset{\sim}{D} \end{aligned}$	Solve problems involving addition, subtraction, multiplication or division in contexts of numbers, measures or pounds and pence.	Identify and record the information or calculation needed to solve a puzzle or problem; carry out the steps or calculations and check the solution in the context of the problem.	Follow a line of enquiry; answer questions by choosing and using suitable equipment and selecting, organising and presenting information in lists, tables and simple diagrams.	Describe patterns and relationships involving numbers or shapes; make predictions and test these with examples.	Present solutions to puzzles and problems in an organised way; explain decisions, methods and results in pictorial, spoken or written form, using mathematical language and number sentences. Children should begin to use a range of sentence stems to explain their reasoning. These should be clearly displayed.

$\begin{gathered} m \\ \vdots \\ \underset{\sim}{\omega} \end{gathered}$	Solve one-step and two-step problems involving numbers, money or measures, including time, choosing and carrying out appropriate calculations.	Represent the information in a puzzle or problem using numbers, images or diagrams; use these to find a solution and present it in context, where appropriate using f.p notation or units of measure.	Follow a line of enquiry by deciding what information is important; make and use lists, tables and graphs to organise and interpret the information.	Use patterns and relationships involving numbers or shapes, and use these to solve problems.	Describe and explain methods, choices and solutions to puzzles and problems, orally and in writing, using pictures and diagrams. Children should be using a range of sentence stems to explain their reasoning. These should be clearly displayed.
$\begin{aligned} & \underset{\sim}{\dot{\omega}} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	Solve one-step and two-step problems involving numbers, money or measures, including time; choose and carry out appropriate calculations, using calculator methods where appropriate.	Represent a puzzle or problem using number sentences, statements or diagrams; use these to solve the problem; present and interpret the solution in the context of the problem.	Suggest a line of enquiry and the strategy needed to follow it; collect, organise and interpret selected information to find answers.	Identify and use patterns, relationships and properties of numbers or shapes; investigate a statement involving numbers and test it with examples.	Report solutions to puzzles and problems, giving explanations and reasoning orally and in writing, using diagrams and symbols. Children should be using a range of sentence stems to explain their reasoning. These should be clearly displayed.
$\begin{aligned} & \text { n } \\ & \stackrel{1}{\pi} \\ & \stackrel{1}{\tau} \end{aligned}$	Solve multistep problems involving whole numbers and decimals and all four operations, choosing and using appropriate calculation strategies, including calculator use.	Represent a puzzle or problem by identifying and recording the information or calculations needed to solve it; find possible solutions and confirm them in the context of the problem.	Plan and pursue an enquiry; present evidence by collecting, organising and interpreting information; suggest extensions to the enquiry.	Explore patterns, properties and relationships, and propose a general statement involving numbers or shapes; identify examples for which the statement is true or false.	Explain reasoning using diagrams, graphs and text; refine ways of recording using images and symbols. Children should be confidently using a wide range of sentence stems to explain their reasoning. These should be clearly displayed.

$\begin{aligned} & \bullet \\ & \frac{0}{\overleftarrow{\omega}} \\ & \stackrel{\rightharpoonup}{\nu} \end{aligned}$	Solve multistep problems, and problems involving fractions, decimals and percentages; choose and use appropriate calculation strategies at each stage, including calculator use.	Tabulate systematically the information in a puzzle or problem; identify and record the steps or calculations needed to solve it, using symbols where appropriate; interpret solutions in the original context and check their accuracy.	Suggest, plan and develop lines of enquiry; collect, organise and represent information, interpret results and review methods; identify and answer related questions.	Represent and interpret sequences, patterns and relationships involving numbers and shapes; suggest and test hypotheses; construct and use simple expressions and formulae in words then symbols (e.g. the cost of c pens at 15 pence each is $15 c$ test pence).	Explain reasoning and conclusions, using words, symbols or diagrams as appropriate. Children should be confidently using a wide range of sentence stems to explain their reasoning. These should be clearly displayed.
	Solve problems by breaking down complex calculations into simpler steps, choose and use operations and calculation strategies appropriate to the numbers and context; try alternative approaches to overcome difficulties; present, interpret and compare solutions.	Represent information or unknown numbers in a problem, for example in a table, formula or equation; explain solutions in the context of the problem.	Develop and evaluate lines of enquiry; identify, collect, organise and analyse relevant information; decide how best to represent conclusions and what further questions to ask.	Generate sequences and describe the general term; use letters and symbols to represent unknown numbers or variables; represent simple relationships as graphs.	Explain and justify reasoning and conclusions, using notation, symbols and diagrams; find a counterexample to disprove a conjecture; use step-by-step deductions to solve problems involving shapes.

Suggested Sentence Stems Y2-6: Because..., I noticed that..., I already know... so..., It won't work because..., It must be because..., It could be... because..., It can't be... because..., I looked for a pattern/ sequence/ relationship/connection/ rule, I tried... and this happened..., If... then..., This is always true because...

Appendix B

Calculation Policy

Potter Street Academy

Calculation Policy 2019

This calculation policy is intended to bring consistency, continuity and progression as methods build upon each other from the early years foundation stage (YR), to year 6.

It is essential that rapid recall of key number facts is embedded prior to written calculations being taught. This is necessary as the written calculations outlined in this policy rely on mental strategies to process numbers efficiently and with confidence. Therefore, mental strategies are included within this policy. This is particularly relevant now that in Year 4 the children will take the National Multiplication Tables check, which will be introduced from June 2020.

The links between subtraction, addition, division and multiplication are constantly reinforced throughout all year groups. These are particularly relevant when looking at the number facts. The concept of the inverse operation will really help the children develop the ability to complete mental calculations and the term will be introduced to Year 2. Children will also be encouraged to use this to check their workings out.

Children's understanding of place value is central to all of these calculation processes. Developing an understanding of numeracy, quantity and the number system is of intrinsic importance to the ability to be successful in calculation. Therefore, structured place value apparatus (e.g. base 10) are on the tables when children are working through a new calculation method to help them see this relationship and to develop their understanding of the processes they are working through. This will provide visual images and models of the numbers and allow children to develop a strong sense of numeracy.

As part of every lesson, emphasis will be made on mathematical vocabulary and children should have access to written vocabulary at all times to ensure they can recognise and spell them as well as use it in their explanations. There will also be a particular focus on children explaining their methods, including written explanations and evidence of reasoning.

If you are unsure of any terminology or processes in this document then do not hesitate to contact the Maths Lead or your child's class teacher.

Year	Addition \& Subtraction	
YR	Children count fluently in 1's from 1 to 20. [Forwards and backwards] Children are encouraged to develop a mental picture of the number system in their heads to use for calculation. They can use this image again to calculate ' 1 more' [then ' 1 less'] and find ' 1 more/less' on a marked number line. They begin to count on/back from any number using '1more/less' knowledge. They should experience practical calculation opportunities using a wide variety of equipment, e.g. small world play, role play, counters, cubes etc. They develop ways of recording calculations using pictures, etc. 0 and 5 Children will recognise and use $+=-$ signs and understand addition as combining 2 groups and subtraction as taking away from a group.	They learn to write numbers carefully. Children understand the = sign means is the same as, not makes, and that children see calculations where the equals sign is in a different position, e.g. $9-5=4$ and $4=9-5$ Children who are ready may record this as: $7-4=3$

	By the end of EYFS most children will: say numbers in familiar contexts such as number rhymes or in role play recognise, count and order numbers up to 20 use the vocabulary involved in addition and subtraction recognise differences in quantity of everyday objects and to find one more understand the vocabulary of addition and subtraction in practical activities know the + , = and - signs know number bonds to 10	ne less in solving practical problems	Vocabulary Numbers, one ... twenty, count, order, add, and, plus, take away, subtract, minus more, less, equal, same as, Part-part whole
Year	Multiplication and Division		
YR	Children are able to solve simple problems involving doubling. [In context] Double 4 is 8 \square \square \square \square \square \square \square double 4 is 8 ' 4 and 4 equals 8 ' $4 \times 2=8$ $‘ 4+4=8 \prime$	Children are able to solve simple problems involving halving and sharing. [In context] "Sharing equally between." Half of 8 is 4	
	By the end of EYFS most children will: - recall all doubles to 5 - know that halving is the same as sharing between 2 and using this to solve simple problems - know what is half of all even numbers to 20		Vocabulary equal, same as, double, half, share equally between

Year	Addition	Subtraction								
Y1	Mental Methods Record addition by showing jumps on marked number lines Or moving onto higher numbers with the hundred square: They will memorise number facts to 10 (then 20) in several forms establishing addition and subtraction as related operations. They will record simple mental addition using + and $=$ Written Methods Children will be encouraged to count on using practical resources e.g. fingers, cubes... to combine groups of objects to find the totals. E.g. $6+5=11$, start with 6 and use part of the second number to fill the tenframe, then add on 1 more. Use a number line to 'bridge' through 10. e.g. '9 add 5'. They will move on to the use of number lines and Base 10 equipment to support their developing understanding of addition [adding 1, or 10]	Mental Methods Children understand subtraction as 'take away'. They use practical equipment. e.g. Alex has 12 p. I take away 4 p from him. How much does he have left? Bridging through ten. E.g. $14-5=9$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9. Use a marked number line to count back: e.g. $6-4=$? In preparation for understanding how to find the difference by comparing two amounts, children should be shown that finding the difference is linked to subtraction and an appropriate strategy to use when the numbers are close together. e.g. 13-9 "The difference between 13 and 9 is..." To find the difference, children need to compare the 1\|2	3	4	5	6	7	8	9 $10\|11\| 12\|3\| 14\|15\| 16 \quad$ two amounts. Ask "How many more?" [or less] The next stage is to make the smaller amount the same size as the larger amount by counting on: $9+?=13$ "If 13 is the whole, 9 is a part and ? is a part." Written Methods Record simple mental subtractions using - and =	
	MASTERY - The Big Ideas (NCETM) Relating numbers to 5 and 10 helps develop knowledge of the number bonds within 20 . For example, given $8+7$, thinking of 7 as 2 +5 and adding the 2 to 8 to make 10 and then the 5 to total 15 . Thinking of part whole relationships is helpful in linking addition and subtraction. For example, where the whole is 6 , and 4 and 2 are parts. This means that 4 and 2 together form the whole, which is 6 and 6 subtract 4 leaves the 2 and 6 subtract 2 leaves the 4 . Can you see these number sentences in the picture $\begin{aligned} & 3+2=5 \\ & 2+3=5 \\ & 5-3=2 \\ & 5-2=3 \end{aligned}$		Vocabulary add, more, plus, and, make, altogether, total, sum, equals, equals to, double, most, count on, number line equal to, take, take away, less, minus, subtract, leaves, difference between (distance between), how many more, how many fewer, less than, most, least, count back, how many left, how much less is...? Number bonds/ number facts Addition facts/ subtraction facts Fact family							

Year	Multiplication	Division	
Y1	Mental Methods Recall doubles of all the numbers to at least 10 and recall the corresponding halves． Count on or back in 1＇s，2＇s，5＇s and 10＇s in contexts：dropping coins of different values into a box，counting fingers on hands．．． Multiply with concrete，pictorial representations and arrays： There are 2 sweets in one bag．How many sweets are there in 5 bags？ Written methods $\begin{gathered} \text { Looking at } \\ \text { columns } \\ 2+2+2 \\ 3 \text { groups of } 2 \end{gathered}$ Looking at rows $3+3$ 2 groups of 3 Language and model must match－show by indicating one group ［e．g．using loops or build／make groups］	Mental Methods Sharing： Share a group of objects equally between 2 group e．g．sharing objects between 2 plates：Share 14 butt Grouping：In context Divide quantities into equal groups． How many 2＇s are there in 10 ？	between 2 dishes． $2+2+2+2=8$ There are 4 nairs of two．
	MASTERY－The Big Ideas（NCETM） Counting in steps of equal sizes is based on the big idea of＇unitising＇；treating a group of，say，five objects as one unit of five． Working with arrays helps pupils to become aware of the commutative property of multiplication，that 2×5 is equivalent to 5×2 ． Ask pupils to use concrete objects to answer questions such as： －What is double 4？ －What is half of 6 ？ Anna is counting in fives： $5,10, \square, 20, \square, \square, \ldots$ Fill in the missing numbers． Show pupils pictures or groups of objects like the examples below．Ask questions such as＇How many biscuits are there altogether？＇ ＇How many cherries are there altogether？＇ Observe how pupils count the objects．Do they count in twos，fives etc．or do they count in ones？		Vocabulary groups of，lots of，times，array， altogether，multiply，count share，share equally，one each， two each．．．，group，groups of，lots of，array Odd，Even Multiply，Multiplication，Times，Product Repeated addition Array Divide，Division Groups，Grouping，Sharing

Mental Methods

Pupils will add with 2-digit numbers developing mental methods with greater fluency [including bonds to 100 with multiples of 10 e.g. $30+70=100$].

Written Methods

(i)

Pupils will add 2-digit numbers and 1-digit numbers and add 10s to 2-digit

numbers
$24+5=29$

$\overbrace{24}^{24+5=29} \overbrace{26}^{24} \overbrace{27}^{+1} \overbrace{28}^{+1} \overbrace{28}^{+1}$

Pupils will be taught how to add two 2-digit numbers, using examples that do not cross the tens boundary e.g. $24+45=$?

Subtraction

Mental Methods

Pupils should subtract on a marked number line by counting back.
ack.
They will be taught to recognise that when numbers are close together, it is more efficient to count on to find the \qquad difference.
Comparison Bar Models
Usa is 13 years old. Her sister is 22 years old.
Find the difference in oge between them.

Understanding the relationship between addition and subtraction needs to be continually reinforced.

Written Methods

Pupils will use a number line to subtract one and two digit numbers from a two digit number.

$$
\begin{aligned}
& 59-25=34 \text { Partition the second } \\
& \text { number and subtract it in tens and } \\
& \text { units: } \\
& -1 \\
& \text { unt } \\
& \hline
\end{aligned}
$$

Pupils will be taught to bridge through 10 :

MASTERY - The Big Ideas (NCETM)

Understanding that addition of two or more numbers can be done in any order supports children's fluency. When adding two numbers it can be more efficient to put the larger number first. E.g. $\mathbf{3 + 8} \mathbf{8}$ it is easier to calculate $8+3$. When adding three or more numbers it is helpful to look for pairs of numbers that are easy to add. E.g. given $\mathbf{5 + 8 + 2}$.
Understanding the importance of the equals sign meaning 'equivalent to'. Empty box problems can develop this key idea.
Correct use of the equals sign should be reinforced at all times. Altering where the equals sign is placed develops fluency and flexibility further.
Fill in the missing numbers and explain what you notice.
$23+\square=30$
$33-\square=30$
$53-3=\square$
$43+\square=50$

Pupils use a bar model to explore addition and subtraction facts and the relationship between them.

Vocabulary

sum, tens, units, partition, addition, column, tens boundary
difference, strategy, partition, tens, units
Add, subtract
Count on, count back
More, less
Plus, minus, total, sum
Difference between
Partition, Bridge, Round, adjust
Inverse
Number line
Number facts
Multiple of ten, tens boundary

Year	Addition							Subtraction			
Y3	Written Methods Add numbers with up to 3-digits They should partition the numbers and then add the units first, then the tens and hundreds etc before adding together to make the total. Children need to understand place value and what they are adding in each column e.g. the 7 and 8 are 7 tens add 8 tens. Move to the compact column addition method, with 'exchanging': 146 $\begin{array}{r} 179 \\ +\quad 83 \\ \hline 262 \\ \hline 11 \end{array}$							Mental Methods Subtract mentally a 3-digit number and ones Subtract mentally a 3-digit number and tens Subtract mentally a 3-digit numbers and hundreds Written Methods Subtracting with $\mathbf{2}$ and $\mathbf{3}$ digit numbers (introduce partitioned column subtraction method) $87-45=42$ Move on to exchanging tens, using apparatus to model, to develop children's understanding. Next step - moving on to hundreds, tens and units.			
	MASTERY - The Big Ideas (NCETM) Relating numbers to 5 and 10 helps develop knowledge of the number bonds within 20. E.g. $8+7$, thinking of 7 as $2+5$, and adding the 2 and 8 to make 10, then the 5 to 15 . This should then be applied when calculating with larger numbers. Subtraction bonds can be thought of in terms of addition: for example, in answering $15-8$, thinking what needs to be added to 8 to make 15 . Counting on for subtraction is a useful strategy that can also be applied to larger numbers. What do you notice? Is there a relationship between the calculations? Write the four number facts that this bar model shows.										Vocabulary hundreds, boundary, increase, vertical, expanded, compact exchange, 'carry', decrease, hundreds, value, digits partition, Calculation, Calculate Addition, Subtraction, Sum, Total Difference, Minus, Less Column addition, Column subtraction Operation Estimate Inverse Operation

Multiplication

Mental Methods

Recall and use multiplication facts for the 2, 3, 4,5,8 and 10 times tables, and multiply multiples of 10. e.g. $4 \times 8=$

- Either start with $4 \rightarrow$ double it (8), double it(16) , double it(32)
- Or start with $8 \rightarrow$ double it(16) , double it(32)

Develop fluency in mental strategies using the commutative law
e.g. $3 \times 11 \times 5=5 \times 11 \times 3=55 \times 3$

and the distributive law

e.g. $15 \times 2=10 \times 2+5 \times 2$

Develop fluent mental methods to solve a range of problems

$$
\begin{aligned}
& 15 \times 2= \\
& 20+10=30
\end{aligned}
$$

Written Methods

i. Multiply 2-digits by a single digit number develop understanding of use of arrays

ii. Introduce the grid method for multiplying 2-digit by single - digits: e.g. $\mathbf{3 4} \mathbf{x} 7$

Children should be confident in partitioning as well as multiplication knowledge.

Note: They may make errors with the multiplying aspect,

x	30	4
7	210	28

although be fine adding the amounts together, which is easily
shown using this method
$210+28=238$
(Children to use an appropriate method for the addition)

MASTERY - The Big Ideas (NCETM)

It is important for children not just to be able to chant their multiplication tables but also to understand what the facts in them mean, to be able to use these facts to figure out others and to use in problems. It is also important for children to be able to link facts within the tables (e.g. $5 \times$ is half of $10 \times$). They understand what multiplication means, see division as both grouping and sharing, and see division as the inverse of multiplication.

What do you notic	
3×4	3×8
4×4	4×8
3×5	3×1

What is 3×4 ?
What is 13×4 ?
Asking 'How did you get that?' can help you decide whether children are working efficiently with questions like 13×4 by, for example, calculating 10×4 and adding $3 \times$ 4 , and that 3×4 is not obtained by counting in is.

Division

Mental Methods

Recall and use multiplication and division facts for the 2, 3, 4, 5, 8 and 10 times tables, (through halving connect the 2,4 and 8 tables) e.g. $32 \div 4=$ Start with $32 \rightarrow$ halve it(16), halve it(8)

Develop efficient mental methods e.g. using multiplication and division facts to derive related facts

Written Methods

Divide 2-digit numbers by a single digit - where there is no remainder in the final answer, then with remainders

Model grouping on a number line:
i. As repeated addition [counting on]

ii. As repeated subtraction [counting back]

$$
10 \div 3=
$$

This can also be done vertically 10

- beginning 'chunking'

Short Division

- 3When introducing - limit numbers to no exchanges... then with 4 exchanges.

Vocabulary

exchange, decrease, hundreds, value, digits
partition, grid method, multiple, product, tens, units, value inverse, short division, 'carry', remainder, multiples
Multiplication table, Times table
Multiply, Multiplication, Times, Product
Divide, Division
Inverse
Operation, Estimate

Year

Y4

Multiplication

Mental Methods

Count on in multiples of 6,7,9, 25 and 1000
Recall multiplication facts for all multiplication tables up to 12×12
Use place value, known facts and derived facts to multiply mentally fluently
Approximate before they calculate and make this a regular part of their calculating.

Written Methods

Multiply 2 and 3 -digits by a single digit, using all multiplication tables up to 12×12

Developing the grid method

i. $\quad \mathbf{T U} \times \mathbf{U}=$

x	30	4
7	210	28

ii. $\quad \mathrm{HTU} \times \mathrm{U}=$ 238

\times	100	40	7
	600 200 6$+600$	240	420
+420			

[Note: This method shows clearly where errors may occur. The procedure may be correct, but their multiplication or addition skills may be a problem, if the answer is incorrect.]

Pupils could be asked to work out a given calculation using the grid, and then compare it to the teacher's column method. Discuss what the similarities and differences are. Go through the steps and use as success criteria.

MASTERY - The Big Ideas (NCETM)

It is important for children not just to be able to chant their multiplication tables but to understand what the facts in them mean, to be able to use these facts to figure out others and to use them in problems.
It is also important for children to be able to link facts within the tables (e.g. $5 \times$ is half of $10 \times$). They understand what multiplication means and see division as both grouping and sharing, and to see division as the inverse of multiplication.
The distributive law can be used to partition numbers in different ways to create equivalent calculations. For example, $4 \times 27=4 \times(25+2)=(4 \times 25)+(4 \times 2)=108$.
Looking for equivalent calculations can make calculating easier. For example, 98×5 is equivalent to $98 \times 10 \div 2$ or to $(100 \times 5)-(2 \times 5)$. The array model can help show equivalences.

Division

Mental Methods

Count back in multiples of 6, 7, 9, 25 and 1000 [from any given number].
Recall multiplication and division facts for all multiplication tables up to 12×12
Use known facts to support new facts... e.g. 7 x can be calculated by adding 5 x and 2 x

$$
7 \times 8=5 \times 8+2 \times 8
$$

Written Methods

Divide up to 3-digit numbers by a single digit (without exchanges to begin with)
'Chunking' can be used to model alongside efficient methods.
$94 \div 4=$
94
(214
Continue to develop short division
Make sure children are confident with this method before moving on to larger
(10x) -40 54
(10x) -40
14
(3x) -12 numbers

$$
2
$$

$$
\text { nswer } 23 \text { r } 2
$$

19
$4 \longdiv { 7 ^ { 3 } 6 }$
$3 \longdiv { 7 ^ { 1 } 4 ^ { 2 } 1 }$
093
$8 \longdiv { 7 ^ { 7 } 4 ^ { 2 } 4 }$

Children should be taught that a 0 is used to keep place value, if the number is not divisible.
Children to be encouraged to fluently use repeated addition to create a list of solutions for $\mathbf{1 x} \boldsymbol{x} \mathbf{1 0 x}$ of the divisor [to be used as a 'ready reckoner' of x facts].
e.g. $744 \div 8=\quad .$. writing ${ }^{\prime} 8,16,24,32,40,48,56,64,72,80$ '

Use your knowledge of multiplication tables to complete these calculations.

$7 \times 6=$
$7 \times 2 \times 3=$
$8 \times 7=$
$2 \times 4 \times 7=$
$2 \times 2 \times 2 \times 7=$

$$
\begin{aligned}
& 12 \times 6= \\
& 13 \times 6= \\
& 12 \times 12= \\
& 12 \times 13= \\
& 12 \times 0=
\end{aligned}
$$

Which calculations have the same answer? Can you explain why?

Vocabulary
digits, inverse exchange inverse, divisible by factor
Place value
Multiply,
Multiply,
Multiplication,
Times, Product
Divide, Division Tenth, hundredth Factor pairs
Short multiplication
Operation
Estimate

Yea	Addition	Subtraction	
Y5	Mental Methods Add numbers mentally with increasingly larger numbers, using and practising a range of mental strategies i.e. add the nearest multiple of 10, 100, 100 and adjust; use near doubles, inverse, partitioning and re-combining; using number bonds [practise for increased fluency]. Estimate and check solutions using mental strategies. All strategies lead to increased fluency. Written Methods Add numbers with more than 4 digits (including money, measures and decimals with different numbers of decimal places) Numbers should exceed 4 digits Moving on to add more than two values Pupils should: Understand the place value of tenths and hundredths and use this to align numbers with different numbers of decimal places. [Example: adding ' 0 ' as a place holder]	Mental Methods Subtract numbers mentally with increasingly larger numbers Children to use compact column subtraction once confident with the partitioned column method. Children to begin subtracting with larger integers before moving on to decimals. $\begin{array}{r} 121473 / 4 \cdot 10 \\ -562 \cdot 5 \\ \hline 1911 \cdot 5 \\ \hline \end{array}$ Zero can be added to empty decimal places (up to 2 dp) to aid understanding of what to subtract in that column. Pupils should: Be confident in solving subtraction calculations in a range of contexts, including money and measures.	
	MASTERY - The Big Ideas (NCETM) Before starting any calculation is it helpful to think about whether or not you are confident that you can do it mentally. For example, $3689+4998$ may be done mentally, but $3689+4756$ may require paper and pencil. Carrying out an equivalent calculation might be easier than carrying out the given calculation. For example $3682-$ 2996 is equivalent to $3686-3000$ (constant difference). Captain Conjecture says, 'When working with whole numbers, if you add two 2-digit numbers together the answer cannot be a 4-digit number.' Do you agree? Explain your reasoning.		Vocabulary Addition, Subtraction Sum, Total Difference, Minus, Less Column addition, Column subtraction Exchange Operation Estimate decimal places, decimal points, tenths, hundredths and thousandths

Year	Multiplication	Division
Y6	Mental Methods Recall multiplication facts for all times tables up to 12×12. Derive new facts appropriate to for the given calculation. E.g. Example below $\begin{array}{r} 0.02 \times 3=0.06 \text { using } 2 \times 3=6 \\ 0.9 \times 3=2.7 \text { using } 9 \times 3=27 \end{array}$ Written Methods Short and long multiplication as in Y5, and multiply decimals with up to 2 decimal places by a single digit. When recording, decimal points should be aligned. Estimate first $5 \times 3=15 \ldots$ Children should be able to: Use rounding and place value to estimate answers before calculating and use to check their answers.	Mental Methods Recall division facts for all times tables up to 12×12. Written Methods Divide at least 4 digits by both single-digit and two-digit numbers (including decimals up to 2 dps and quantities) Short division, for dividing by a single digit: 'Ready Reckoner': 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 $\begin{array}{r} 11778 \cdot 3 \\ 8 \longdiv { 7 } 4 ^ { 6 } 2 ^ { 6 } 5 3 ^ { 3 } 0 0 ^ { 4 } 0 \end{array}$ Short division, for dividing by a 2-digit number: Refine accuracy of solutions: Any 'remainders' should be shown as fractions, and extended to decimals
	MASTERY - The Big Ideas (NCETM) Standard written algorithms use the conceptual structures of the mathematics to produce efficient methods of calculation. Standard written multiplication method involves a number of partial products. For example, 36×24 is made up of four partial products $30 \times 20,30 \times 4,6 \times 20,6 \times 4$. There are connections between factors, multiples and prime numbers and between fractions, division and ratios. Vocabulary extending multiplication with tenths, hundredths and decimals Common factor Divide, Division, Divisible Divisor, Dividend, Quotient, Remainder Factor	

Year 1 Autumn Term (not including problem solving day) - Use NCETM and White rose for examples of outcomes.

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	EYFS - Given a number identify 1 more or 1 less. Given a number double it/halve it.(110)	Count to 100 forwards and backwards from any given number including 0	Days of the week Months of year (Reciting \& written)	Count, read and write numbers from 1-10/20 in numerals and words Order objects and numbers Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least
Week 2	Count to 20 forwards and backwards from any given number including 0	Ordinal numbers to 20 \& then ongoing (lining up) Pairs to 5 Pairs to 6	Days of the week Months of year (Reciting \& written)	Count, read and write numbers from $1-10 / 20$ in numerals and words Order objects and numbers Identify and represent numbers using objects and pictorial representations using the number line
Week 3	Pairs to 5 Pairs to 6 Given a number identify 1 more or 1 less (1-10)	Count in 10 s and 5 s Pairs to 7 Pairs to 8	Revisit: Name \& recognise 2d and 3 d shapes	Compare objects/numbers/pictorial representations and use < > = (although this is a Year 2 objective can be done modelled by teacher and in practical situations) from 1-10/20
Week 4	Pairs to 5, 6, 7, 8 Count in 10s and 5 s	Count to 100 forwards and backwards from any given number including 0 Pairs to 9 \& 10	O' clock Half past (Practically, prior to recorded work)	Addition symbol. Find Number families (emphasising that addition is commutative) for all pairs completed
Week 5	Count, read and write numbers from 1-20 in numerals and words	Systematic number bonds to 10/20 (Kings \& Queens) IWB games	Revisit: Name \& recognise 2d and 3 d shapes	Addition symbol. Find Number families (emphasising that addition is commutative) for all pairs completed and number bonds to 10 (Do they recognise number bonds when given in a calculation and realise they do not need to work it out?)
Week 6	Number bonds Given a number double it/halve it. $(1-10)$	Count in $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ (Patterns on 100 square)	O' clock Half past	How many left? Introduce subtraction as the inverse of addition. Practically done in Kings/Queens Introducing the subtraction symbol : Introduce related vocab

Week 7	Number bonds	Add and subtract one digit numbers to 10 , including zero	Days of the week Months of year simple word	Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations and missing number problems. $7=$? -9 Add and subtract one digit and two digit numbers to $10 / 20$, including 0
Week 8	Number bonds	Count to and across 100, forwards and backwards from any given number	problems: I go on holiday in the $6^{\text {th }}$ month of the yearwhich month do I go? I go on holiday on Monday. I am away for 4 days. When do I return?	Represent and use number bonds and related subtraction facts within 10/20 Find fact families with all numbers to 10 (addition and subtraction) Find related facts ($7+3$ so $17+3$) Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals ($=$) signs.
Week 9	Count, read and write numbers to 20 in numerals and words.	Count to and across 100, forwards and backwards from any given number	O' clock Half past - simple word problems	Numbers from 11 to 20 Tens and ones Count one more and one less Compare groups of objects Compare numbers Order groups of objects Order numbers Given a number, identify one more or one less. Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least.
Week 10	Count, read and write numbers to 20 in numerals and words.	Count to and across 100, forwards and backwards from any given number	Revisit: Name \& recognise 2d and 3 d shapes	2d/3d shapes and properties

WEEK 11: CONSOLIDATION: REVISIT ANY AREAS OF CONCERN. ENSURE THEY ENTER SPRING TERM WITH MAJORITY OF CHILDREN FLUENTLY USING NUMBER BONDS TO 10 (SOME 20), WITH EFFECTIVE STRATEGIES FOR ADDING AND SUBTRACTING, BEING ABLE TO SAY WHICH NUMBER IS ONE MORE/LESS, PRONOUNCING TEEN NUMBER CORRECTLY WHEN COUNTING, TELLING O'CLOCK TIME.

Once introduced ordinal numbers to be taught daily (lining up/normal classroom routines)
O'clock and Half past to be taught daily/'real life' after initial Oral \& Mental starters

Autumn Oral and Mental - Once introduced the following will be included in daily revisit: Count to 20 forwards and backwards from any
Given number including 0 or 1, Count, read and write numbers to 20 in numerals and words Given a number identify 1 more or 1 less ($1-10$)/
20 , Count in 2 s and 5 s , Number bonds

Year 1 Spring Term (not including problem solving day)

	Oral / Mental Objectives			Main Teaching (remember to include reasoning and empty boxes)
	Revisit	New	Time / Shape	
Week 1	Pairs to 5, 6, 7, 8 Number bonds Count to and across 100, forwards and backwards from any given number	Count in 10 s and 5 s Count in 2 s to 20 Look at number grid to reinforce patterns	Days of the week Months of year (Reciting \& written) 2d/3d shapes and properties	Addition -Add by counting on - adding to what they already have. Find and make number bonds -using their knowledge of number bonds to 10 to find number bonds to 20 , understanding that the ones will stay the same but one number will also have one ten. Addition problem solving within 20
Week 2	Number bonds to 10/20 Add by counting on	Count in 10 s and 5 s Count in 2 s to 20 Look at number grid to reinforce patterns	Days of the week Months of year (Reciting \& written) O' clock Half past	Subtraction- Children build on the language of subtraction, recognising and using the subtraction symbol within 20 The use of zero is important so children know that when nothing is taken away the start number remains the same. Use the part whole model counting back and 'crossing out' methods of subtraction.
Week $3 \& 4$	Add and subtract onedigit and two-digit numbers to 20 , including zero	Count in 10 s and 5 s Pairs to 7 Pairs to 8	Days of the week Months of year (Reciting \& written) O' clock Half past	Compare number sentences/Addition and subtraction problem solving -Compare number sentences within 20 using inequality symbols. Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs. Solve one step problems that involve addition and subtraction, using concrete objects, pictorial representations, and missing number
Week 5	Count in 10s 2s 5s Number bonds to 10/20	Children build on previous learning of counting in twos/fives and go beyond 20 up to 50	Days of the week Months of year (Reciting \& written) O' clock Half past	Numbers to 50 - Count forwards and backwards within 50 using a number track to support understanding of this. Tens and ones Look at how many groups of tens and ones there are in a number. They will use a range of concrete materials to do this.
Week 6	Number bonds to 10/20 Add by counting on Count in 10s 2 s 5 s	Children build on previous learning of counting in twos/fives and go beyond 20 up to 50	Simple word problems involving time	Represent numbers to 50 - Using a variety of concrete materials. Children should be able to state how a number is made up. One more, one less Compare numbers finding one more and one less than given numbers up to 50, building numbers concretely before using number tracks and 1-50 grids.
Week 7	Add and subtract onedigit and two-digit numbers to 20 , including zero Count in 10s 2 s 5 s Number bonds to 10/20	Children build on previous learning of counting in twos/fives and go beyond 20 up to 50	Games (true/false) involving time, shape and multiples of 10 s 2 s 5 s	Compare numbers within 50 Compare two numbers using the inequality symbols. Use the language 'more than', 'less than' and 'equal to' alongside the correct symbols to compare numbers. Order numbers within 50 - Order numbers using the language, 'largest', 'smallest', 'biggest', 'greatest', 'least', 'most' and 'equal to'.

		Simple word problems involving counting in 2 s , 5 s and 10s		Order numbers in ascending and descending order.
$\begin{gathered} \text { Week } \\ 8 \end{gathered}$	Count to and across 100, forwards and backwards from any given number Tens and ones	Describe position, direction and movement, including whole, half, quarter and three quarter turns - do practically linked to clock and prior to fraction work Simple word problems involving time Games (true/false) Involving time, shape and multiples of 10s 2s 5 s		Compare lengths and heights - Use and understand the language of length such as long, short, longer, shorter, tall, small, taller, smaller, equal to understanding that height is a type of length. Measure length - Use non-standard units to measure length and height, understanding that non-standard units should be exactly in line with the object to get an accurate measurement. Build on prior knowledge to understand that objects can vary in length and size, so a standard unit of measurement is required. Introduce a ruler Know to measure from 0 cm .
Week 9	Count to and across 100, forwards and backwards from any given number Number bonds to 10/20	Practical problem solving involving counting in 2 s , 5 s and 10s	Simple word problems involving time	Weight and mass- Use of balance scales is to form an understanding of comparing mass, picking up and feeling the mass of objects before putting them on the scales and seeing what happens. Measure mass - Use non-standard units to weigh and compare the mass of an object and recognise this stays the same to weigh the mass of an object and make the scales balance Compare mass - Comparing the mass of two objects. Use balance scales to compare two objects and use the language of 'heavier', 'lighter' and 'equal'. Use < and > to compare mass.
Week 10	Count to and across 100, forwards and backwards from any given number Number bonds to 10/20	Simple word problems consolidating number bonds $10 / 20$, counting to and across 100, plus length, weight capacity	O' clock Half past - simple word problems	Capacity- Explore the concept in a practical way, using a variety of containers. Compare the volume in a container by describing whether it is full or empty and use 'greater than' and 'less than' to further describe the volume. Children understand that when a container is full, the capacity is equal to the volume but when the container is empty the capacity is the same but the volume is zero. Measure capacity - Capacity of different containers using non standard units of measure, understanding to measure the capacity of a container the unit of measure must stay the same, for example the same cup Compare capacity-Children use 'more', 'less' and 'equal' to compare volume and can use the symbols $<,>$ and $=$
Week 11	Add and subtract onedigit and two-digit numbers to 20, including zero Count in 10 s 2 s 5 s	Recognising coins	2d/3d shapes	Counting in coins - consolidating all addition subtraction, counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Comparing amounts of money - addressing misconception more coins equals greater value.

Agreements: Ordinal numbers to be taught daily (lining up/normal classroom routines)O'clock and Half past to be taught daily/'real life'
Year 1 Summer Term (not including problem solving day)

	Oral / Mental Objectives			Main Teaching (remember to include reasoning and empty boxes)
	Revisit	New	Time / Shape	
Week 1 (3 days)	Describe position, direction and movement, including whole, half, quarter and three quarter turns - do practically moving clockwise, linked to clock and prior to fraction work	Children to use vocab - left, right, up, down, top, below, middle, above. Play games using objects	O' clock Half past GD - quarter to and past	Geometry - Position and direction (PE LESSON LINK) OR ICT link - use bot to plan a route reinforcing language Reinforce prior learning: Place the circle on top of the cube etc Train them in stem sentences: The pyramid is ------ the triangle Make a pattern with counters/cubes: Place a yellow counter on top of the table, place a green one behind it , a blue one to the right of the green etc. Could be directed by teacher or for GD they can explain. Does your pattern match mine? Why/why not?
Please note: The majority of children may have this language (EYFS and normal classroom routine work). If so consolidate some addition and subtraction. When doing turns, I get children to put arms out in front, hands together (they're the minute hand). As they're moving I draw on whiteboard so they link to shape and time. Helps later when link to angles.				
Week 2	Count in 10 s and 5 s Count in 2 s Look at number grid to reinforce patterns: If I count in 10s the last digit will??? Will I say 22 when I count in 5 s? Convince me	Give children an A4 pi to fold in half: What d on how many equal pa will fold it like a card. differently to address may have, concerning like Revisit names of 2D \& sharp eyes	ce of paper and ask you notice? Focus ts. Most children old yours misconceptions they what it should look d shapes: Shirley	Fractions - Children understand $1 / 2$ means one of 2 equal parts Divide objects using sorting hoops. Children find $1 / 2$ of an object or shape and then $1 / 2$ of a quantity. Concentrate on children seeing difference between equal and non equal - Is this $1 / 2$ of this shape? Convince me. Give stem sentences. I know that 5 is half of 10 because --- (there are 2 equal groups of 5). I cannot halve 13 objects because I cannot share them into 2 equal groups. I know that is not $1 / 2$ a circle because (one side is bigger than the other/ they are not equal)
Week 3 (4 days)	Half of numbers. Introduce/ Reinforce doubling /halving inverse operations. Show on fingers	Give children an A4 pie to fold in half: What do Hopefully they can articul from last week Now fold again. What Focus on how many eq	ce of paper and ask you know? ulate learning o you notice? ual parts now	Fractions - Children understand $1 / 4$ means one of 4 equal parts Divide objects using sorting hoops. Children find $1 / 4$ of an object or shape and then1/4 quantity. Concentrate on children seeing difference between equal and non equal - Is this $s 1 / 4$ of this shape? Convince me. Give stem sentences. I know that 1 is a quarter of 4 because --- (there are 4 equal groups of 1)

Week 4	Play number bonds Kings \& Queens Play doubling/halving Kings \& Queens		.Simple word problems involving time. I go away for all of Summer. Which months am I away? etc	Multiplication and Division Children concentrate on counting equal groups of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . They do this pictorially and write number sentences Children begin making arrays building equal groups into columns and rows and explore arrays built incorrectly Thy record using stem sentences (refer to powerpoint)
Week 5	Play number bonds Kings \& Queens Play doubling/halving Kings \& Queens		O' clock Half past GD - quarter to and past	Multiplication and Division Children start with a given amount and share equally. They do practically and then record pictorially and in number sentences Give examples of numbers that do not share equally
Week 6	Add and subtract one-digit and two-digit numbers to 20, including zero Count in 10s 2 s 5 s Number bonds to 10/20	Introduce coins prior to money work: Reinforce coins. Link to counting in $2 \mathrm{~s} / 5 \mathrm{~s}$ \& 10s. I have 310 ps . How many do I have altogether?	Revisit names of 2D \& 3d shapes: Shirly sharp eyes	Represent/ compare and order numbers to $\mathbf{1 0 0}$ - Children should be able to state how a number is made up. Compare numbers using the inequality symbols. Use the language 'more than', 'less than' and 'equal to' alongside the correct symbols to compare numbers. Put in ascending/descending order. Look at how many groups of tens and ones there are in a number. Revisit addition/subtraction using diennes/pictorial representations
Week 7	Number bonds to 10/20 Place value: Clap stamp game: What number?	REFER TO ORAL \& MENTAL STARTER SHEET		Children to recognise and know value of different denominations of coins Work with equivalents 10 p is the same as 5 lots of 2 p etc
Children should now be confident in counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s plus doubling and halving which should make money easier.				
Week 8	Number bonds to 10/20 Place value: Clap stamp game: What number?	REFER TO ORAL \& ME SHEET	TAL STARTER	Money problems/reasoning - use this to reinforce 4 operations and doubling, halving plus missing boxes (boxes in different positions)
Week 9 (Assess)	Count to and across 100, forwards and backwards from any given number Number bonds to 10/20	REFER TO ORAL \& ME SHEET	AL STARTER	Time - Majority of children should now be able to tell the o'clock and half past time. GD should to quarter to and past. They should also know days of week/months of year As well as assessment information use this week to evidence recording clock times/word problems and reasoning
Week 10	REFER TO ORAL \& MENTAL STARTER SHEET			Use this week to do a revision of bold KPIs \& extended Oral \& mentals.
Week 11	Transition into new class			

Agreements: Ordinal numbers to be taught daily (lining up/normal classroom routines) O'clock and Half past (quarter past/to GD) to be taught daily/'real life'

Year 2 Autumn Term (not including problem solving day)
Use NCETM and White rose for examples of outcomes.

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	Recognise numbers to 100 Count objects to 100, read and write numbers in numeral and words	Count in 2's and 5's Count in $\mathbf{1 0}^{\prime}$ s from any number Count in 3's from any number	O' clock Half past	Count objects to 100, read and write numbers in numeral and words Recognise numbers to 100 Order objects and numbers Estimate a quantity (10, 20, 50, 100)
Week 2	Pairs to 6 Pairs to 7 Pairs to 8 Pairs to 10	Find 1 more / 1less, find 10 more / 10 less	O' clock Half past	Compare objects and use $<>=$ Compare numbers and use $<>=$Recognise place value for each digit in a two digit number (37 = 30 + 7)
Week 3	Count in 2's 5's10's Add / Subtract 10 to any number Add / Subtract 1	Pairs to 20	2 d shapes and properties	Find fact families with all numbers to 20 (addition and subtraction) Find related facts ($\mathbf{7 + 3}$ so $\mathbf{7 0}+\mathbf{3 0}, 17+4=21$ so $\mathbf{1 7 0}+\mathbf{4 0}=\mathbf{2 1 0}$)
Week 4	< > or = Count in 2's and 5's Count in 10's from any number Count in 3's from any number	Odd / even numbers Doubles / halves	2d shapes and properties	Find 10 more, find 10 less from any given number Find number bonds to $\mathbf{1 0 0}$ using related facts / multiples of $\mathbf{1 0}$
Week 5	Odd / even numbers Doubles / halves Pairs to 20	Add 11 Add 12 Add 21	Name 2d and 3 d shapes	Add two 2 digit numbers not crossing tens boundary (add ones, add tens) Add a 2 digit and 1 digit number crossing ten Add two 2 digit numbers crossing tens (add ones, add tens)
Week 6	Related facts and fact families Add 11 Add 12 Add 21	Recognise coins Add single digit coin values	3d shapes and properties	Subtract 1 digit from a 2 digit number crossing tens (counting up) Subtract 2 digit from a 2 digit number not crossing ten Subtract two 2 digit number from 2 digit number crossing ten (counting up) Check with the inverse (do not use tens and ones for subtraction)

Week 7	Add 11 (+10, +1) Add 12 (+10, +2) Add 21 (+10, +10, +2)	Add / take away 9 from any given number	Quarter to Half past	Add / subtract two 2 digit numbers involving money, choosing which operation is needed $\begin{gathered} (23+7=30) \\ (56 ? 23=33) \end{gathered}$ Recognise calculations can be done in any order and use the inverse to check Solve one and two step problems using addition or subtraction
$\begin{gathered} \text { Week } \\ 8 \end{gathered}$	Related facts and fact families Sub 11 (-10, -1) Sub 12 (-10, -2) Sub 21 (-10, -10, -2)	Multiples of 10, 2 and 5 Time tables	3d shapes and properties	Recognise the value of coins and notes Add the value to 2 coins Add the value of notes and coins not crossing boundary or using decimal ($£ 5+40 \mathrm{p}$)
$\begin{gathered} \text { Week } \\ 9 \end{gathered}$	Multiples of 10, 2 and 5 Time tables	Add / subtract 10, 11, 20 with money	Quarter to Half past	Use pairs to find next $10(23+?=30)$ Find change from 20p, 30p, 50p Investigate amounts of money that can be made
$\begin{gathered} \text { Week } \\ 10 \end{gathered}$	Odd / even numbers Doubles / halves	Related multiplication facts	Quarter to Half past	Recognise multiples of 2/5/10 and name divisibility rules Record multiplication facts in different ways (arrays, groups, sets, repeated addition) Recognise multiplication can be done in any order
Week 11	Odd / even numbers Doubles / halves	Related multiplication facts	2d shapes and properties	Use equal groups to find division facts Use arrays to find related multiplication and division facts

Year 2 Spring Term (not including problem solving day)
TT Rockstars should be started this term

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	Partition 2 digit numbers Round numbers to nearest 10	Vertices / side of shape	Read clock - $1 / 4$ to and $1 / 4$ past	Round 2 digit numbers to nearest 10 Compare numbers using < = > Mark 2 digit numbers on a number line (10's, 2's, 5's, 1's)
Week 2	Add 3 coins	Half and double numbers	Read clock - $1 / 4$ to and $1 / 4$ past	Recognise and name 2d shapes - regular and irregular Recognise the properties of 2d shapes - vertices, sides Identify lines of symmetry Compare and sort 2d shapes (using venn diagrams)
Week 3	Count 2/5/10/3/4	Find missing number with number line	Read clock to 5 mins or $1 / 4$ to and $1 / 4$ past	Recognise / name properties of 3d shapes - vertices, face Recognise / name and sort 3d shapes Create repeating and equivalent patterns with 2 d shapes

Week 4	Double multiples of 5 Double multiples of 10	Find missing number with number line	Order different amounts of time	Recognise $1 / 2,1 / 3,1 / 4,2 / 4,3 / 4$ of shapes Recognise $1 / 2=2 / 4$ Recognise that all parts of fractions are equal
Week 5	Multiplication and division facts $2 / 5 / 10 / 3 / 4$	Find missing number with number line	How many second in 1 min, 2 minutes How many mins in 1 hour?	Recognise $1 / 2,1 / 3,1 / 4,2 / 4,3 / 4$ of set of objects Find $1 / 2,1 / 4,2 / 4$ of amounts Tell time $1 / 4$ to and $1 / 4$ past
Week 6	Fact families (2 digit and 1 digit) (addition and subtraction)	Mark 2 digit number on number line	Order different amounts of time	Find $1 / 2,1 / 2,2 / 4$ of amounts of money and length Find / Recognise odd and even numbers, describing patterns
Week 7	Add 11 Add 12 Add 13	Use known facts $\begin{aligned} (2 \times 5= & 10 \text { so } 20 \times 5 \\ & =100) \end{aligned}$	Recognise how many secs in min, days in week etc	Recognise multiples of 2/5/10 Describe patterns and investigate statements Show repeated addition and multiplication ($2+2+2=3 \times 2$) in arrays and number sentences
Week 8	Use known facts $(2 \times 5=10 \text { so } 20 \times 5=100)$	Find given amounts of money using correct coins	Positional vocab Clock wise / anti clockwise	Multiply and divide using arrays Understand that multiplication and division are the inverse Create and solve words problems involving multiplication and division
Week 9	Find fractions of amounts	Find given amounts of money using correct coins	Positional Vocab $1 / 4$ turn $1 / 2$ turn $3 / 4$ turn	Measure to the nearest CM Measure to the nearest M Order and compare lengths and weights Solve work problems involving length and weight
Week 10	Pairs that make 10 Pairs that make 100	Read scales thermometer, scales, ruler, jugs	Revise positional vocab	Add 3/4/5 numbers using known facts Add / subtract two 2 digit numbers Recognise and reason with number bonds to 20 (if $14+3=17$, then $3+14=17$ and $10+3=4=17$) Add pairs of numbers
Week 11	Count forward and back in $2 / 5 / 10$	Read scales thermometer, scales, ruler, jugs	Read clock to 5 mins or $1 / 4$ to and $1 / 4$ past	Decide if problems require addition or subtraction Add two 2 digit numbers (crossing tens and including coins, length, height) Subtract two 2 digit numbers (crossing tens and including coins, length, height)
Week 12	Recognise multiples of 2/5/10	Read scales thermometer, scales, ruler, jugs	2d/3d properties of shape	Find change from 50p Find the difference by counting up Compare different lengths / heights using $\langle\rangle,,=(6 \mathrm{~cm}+7 \mathrm{~cm}>4 \mathrm{~cm}+3 \mathrm{~cm})$

Year 2 Summer Term (not including problem solving day)

TT Rockstars should be started this term

With two step problems - At first write them out so they see each step of the problem and calculate as they go (I spend 55p and 25 p, how much do I spend? How much change do I have from $£ 1$? Once they can do this move to all in one go (I spend 55 p and 25 p, how much change will I get from $£ 1$?

	Oral / Mental Objectives			The focus each lesson must be on reasoning - reasoning will need to be
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	Find number patterns $\begin{aligned} & 2,4,6 _, 12 \\ & , 15,10, \quad \end{aligned}$ Predict - What will be the $6{ }^{\text {th }}$ Number?	Reading different scales	Symmetry Where is the line of symmetry? How many lines of symmetry does a rectangle have?	Add / subtract 2 two digit numbers Recognise associated number facts ($2+7=9$ so $12+7=19$ because and $12+17=29$ because) Reason about number bonds $-I$ know that $17+13=30$ because in know that 7 and 3 make 10, 10 and 10 make 20 then I recombine. For GD - explain how $29+17=15+4+$??
Week 2	Multiplication and division facts with arrays From arrays know that 3×5 $5 \times 3,15 / 3,15 / 5$ GD how many ways can you make use 15, 3, 5 to make sentence?	Reading different scales Include predicting number where you have only give first and last numbers on the scale	Tell the time to 5 mins Also ask what will be the time in 5 mins , 10mins, 15 mins?	Read variety scales with divisions of 1, 2, 5, 10 (thermometer, ruler, scales) GD make predictions to $6^{\text {th }}$ number etc, estimate on blank scale and reason why Read scales and estimate missing numbers Problems - Tom has the amount of water shown of the scales, Jane has ??? more, how much does jane have? GD - How much do they have altogether?
Week 3	Count 2/5/10/3/4 - forward and backwards (miss some number out - they can only say the even numbers when counting in 5's etc)	Find missing number with number line (link to scales work)	Order different amounts of time Include mixing hours and minutes, days and weeks etc	Tell the time to the nearest $1 / 2$ past, $1 / 4$ past, $1 / 4$ to GD - Tell the time to the nearest 5 minutes Problems with time - Its 1 pm , how long to I get home at 3.00 pm / $3.30 \mathrm{pm} / 3.45 \mathrm{pm}$? If my program starts at 5.45 pm and lasts $1 \mathrm{hr} / 30$ minutes when does it finish? Its 4.45 , if my swimming lesson lasts $2 \mathrm{hrs} / 1 \mathrm{hr}$ and half when will it finish? If I go to bed in one hour what time will it be? What if I'm 15 minutes late?
Week 4	Find fractions of amounts $G D-1 / 26=1 / 3$ of ? because??	Read graphs and charts (show examples from SATs paper)	Verbally reason about shape	Solve one and two step problems with money and different measures (length, weight) - include some reading of data

			I know this is a cube because \ldots.
Week 5	Multiplication and division		How many second in SATs week
facts $2 / 5 / 10 / 3 / 4$	1 min, 2 minutes How many mins in 1 hour?	Recognise $1 / 2,1 / 3,1 / 4,2 / 4,3 / 4$ of set of objects Find $1 / 2,1 / 4,2 / 4$ of amounts, money and length Tell time $1 / 4$ to and $1 / 4$ past	

Year 3 Autumn Term

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	- Counting in $2,5,10,3$ - Identify 1 or 10 more or less than a number to 100 - Counting in steps of 50 and 100	-Read and write numbers to 1000 in numerals and words -Recognise the value of each digit in a 3 digit number	-Half past - Name 2D shapes: circle/square/ rectangle/triangle/ rhombus/ trapezoid/ heptagon/pentagon/ hexagon/ octagon/ parallelogram	- Count in steps of $100 / 50$ - Recognise the place value of each digit in a three-digit number (hundreds, tens, ones) - Compare numbers to 1000
Week 2	- Count in steps of 100/50 - Read and write numbers to 1000 . - Recall 3x table facts - Identify 1 or 10 more or less than a number to 1000	-Estimate place on a number line -Identify 10/100 more and less than a given number	- Half past/ o'clock -Recognise the value of each digit in a 3 digit number	- Recognise numbers to 1000 on a number line - Compare objects to 1000 using < > = - Compare numbers to 1000 - Order numbers to 1000 - Problem solving
Week 3	- Compare numbers to 1000 using < > = - Odd / even numbers - Doubles / halves - Use number facts to solve problems e.g. I know that $40+50$ is 90 because $4+5=9$ - Recall 3x table facts	-Counting in 50 s and 100s. - Counting in 4 s .	-0'clock/ half past/ quarter to and past - Name 3D shapes Cone/ sphere/ tetrahedron/ cuboid/ cylinder/ cube/ triangular prism/ square-based pyramid	- Solve missing number problems with 1 and 2 digits - Solve one-step addition and subtraction problems with: - a two digit number and ones - a two digit number and tens - two two-digit numbers Solve addition and subtraction adding three one-digit numbers
Week 4	- Addition and subtraction facts to 20 and 100.	- Add and subtract multiples of $10 / 100$ -Counting in 4 s	- O'clock/ half past/ quarter to and past	Use expanded formal method to: - Add a 2-digit and 3-digit number - not crossing 10 or 100 - Add a 2-digit and 3-digit number - crossing 10 or 100

	- Add and subtract 2digit numbers and 1s, 2-digit numbers and 10s. - Add three 2-digit numbers - Odd/even numbers - Number bonds to 20/100		-Identify 3D shapes from properties	- Add two 3-digit numbers - not crossing 10 or 100 - Add two 3-digit numbers - crossing 10 or 100 - Problem solve with addition
Week 5	- Add 3-digit and 1digit numbers crossing 10 - Subtract a 1-digit number from a 3-digit number - crossing 10 - Number bonds to 20/100	-Estimate answers to a calculation. -Use the inverse. - Recall 4 x table facts - Missing number problems.	- Tell the time to the nearest 5mins -Recognise 2D shapes from different orientations	Use expanded formal method to: - Subtract a 2-digit and 3-digit number - not crossing 10 or 100 - Subtract a 2digit and 3-digit number - crossing 10 or 100 - Subtract two 3-digit numbers - not crossing 10 or 100 - Subtract two 3-digit numbers - crossing 10 or 100 - Problem solve with subtraction
Week 6	- Related facts and fact families Add 11 Add 12 Add 21 Add 9	- Add and subtract 100s - Add and subtract crossing 100 - Recall 4 x table facts	-Tell the time to the nearest 5mins -Recognise 3D shapes from different orientations	- Missing number problems with addition and subtraction using part-whole model - Missing number problems with addition and subtraction e.g. $340-? ?=300,535=235+? ? ?, ? ? ?+140=540$ - Use the inverse to solve problems - Estimate answers to addition questions- check with the inverse - Estimate answers to subtraction questions- check with the inverse
Week 7	- \quad Add $11(+10,+1)$ - Add $12(+10,+2)$ - Add $21(+10,+10,+2)$ - Add / take away 9 from any given number	-Estimate answers to addition calculations - Add two 3 digit numbers crossing and not crossing 10/100 -Counting in 8s	-Tell the time to the nearest 5mins -Recognise 2D shapes from different orientations	- Representing 3 times tables - Multiplying by 3 - Dividing by 3 - The 3 times-table - Problem solving
Week 8	- Add two 3 digit numbers crossing and not crossing 10/100 - Number bonds to 20/100/1000	- Subtract two 3 digit numbers crossing and not crossing 10/100 -Counting in 8s	-Tell time to the nearest minute - Properties of 2D shapes	- Representing 4 times tables - Multiplying by 4 - Dividing by 4 - The 4 times-table - Problem solving

Week 9	- Missing numbers addition and subtraction - Number bonds to 20/100/1000	- Addition and subtraction crossing 10/100 -Counting in 8s -Recall 8 times tables facts	-Tell time to the nearest minute -Properties of 3D shapes	- Representing 8 times tables - Multiplying by 8 - Dividing by 8 - The 8 times-table - Problem solving
Week 10	-Recognise the value of different coins and notes	-Recall 8 times table facts	-Tell time to the nearest minute -Use language relating to dates- days, weeks, months, year	- Recognise, find and name $1 / 2,1 / 4,1 / 3$ of a shape or length - Recognise, find and name $2 / 4,3 / 4$ of a shape or length - Recognise, find and name $1 / 2,1 / 4,1 / 3$ of a set of objects or quantity - Recognise, find and name $2 / 4,3 / 4$ of a set of objects or quantity - Problem solve with fractions
Week 11	-recognise the value of different coins and notes - Use language relating to dates- days, weeks, months, year	-Recall 3, 4, 8 times table facts -Use the inverse.	-Tell time to the nearest minute -Use language relating to dates- days, weeks, months, year	- Vocab lesson: compare, describe and solve practical problems for: - lengths and heights: long/short, longer/shorter, tall/short, double/half - mass and weight: heavy/light, heavier than/lighter than - capacity and volume: full/empty, more than/less than, half, half full, quarter full - time: quicker, slower, earlier, later - Problem solve with units of measure
Week 12	- Add coins to find total -Use language relating to dates- days, weeks, months, year	-Recall 3, 4, 8 times table facts -Use the inverse.	- Tell time to the nearest minute -Use language relating to dates- days, weeks, months, year	- Choose the correct unit of measure and problem solve - lengths and heights- $\mathrm{m} / \mathrm{cm} / \mathrm{mm}$ - mass- kg/g - temperature $\left({ }^{0} \mathrm{C}\right)$ - capacity- L/ml - Problem solve with a variety of different units
Week 13	- Add coins and notes to find total - Use language relating to dates- days, weeks, months, year	-Recall 3,4,8 times table facts	-Tell time to the nearest minute -Use language relating to dates- days, weeks, months, year	- Tell and write the time to o'clock, half-past, quarter to and past - Tell and write time to nearest minute - Order and arrange combinations of mathematical objects in patterns - Order and arrange combinations of mathematical objects in sequences - Problem solve with time
Week 14	Consolidation	Consolidation	Consolidation	Consolidation or data work: - Interpret and construct simple pictograms, tally charts, block diagrams and simple tables - Ask and answer questions about totaling and comparing categorical data - Address gaps that were identified through assessments

Year 3 Spring Term

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	- Identify 1 more or less than a given number - Read and write 1-100 in numerals and words - Count in steps of 2, 3, 5 and 10 forwards and backwards from any given number - Compare and order numbers to 100 using <, >, =	- Find 10 or 100 more or less than a given number	- Tell time to the nearest minute - True and False statementsproperties of 2D shapes	- Vocab lesson: Use objects, pictorial representations and number lines to use language of - equal to, more than, less than, fewer, most and least. - Solve one-step addition and subtraction problems including missing number problems including finding the difference. - Add and subtract numbers using objects and representations- - A two digit number and ones - A two digit number and tens - Adding three one digit numbers
Week 2	- Count in steps of 50,100 forwards and backwards from any given number - +/- numbers to 20 - Find 10 or 100 more or less than a given number - $3 x$ tables x and \div	- Missing number problems to 20	- Tell time to the nearest minute - True and False statementsproperties of 2D shapes	- Add three digit numbers using formal methods not exchanging - Add three digit numbers using formal methods exchanging - Subtract three digit numbers using formal methods not exchanging - Subtract three digit numbers using formal methods exchanging - Problem solve with addition and subtraction using a variety of contexts
Week 3	- Count in steps of 50, 100 forwards and backwards from any given number - +/- numbers to 100 - Find 10 or 100 more or less than a given number - $3,4 \times$ tables x and \div - Missing number problems using hundreds		- Tell time to the nearest minute - True and False statementsproperties of 2D shapes	- Solve multiplication problems with calculations within the multiplication tables - Solve multiplication problems using - Materials - Arrays - Repeated addition Problems in a variety of contexts
Week 4	- Count in steps of 50, 100 forwards and backwards from any given number - +/- numbers to 100		- Tell time to the nearest minute - True and False statements-	- Comparing multiplication statements using < > = and correct vocabulary: less than, greater than, equal to - Related multiplication calculations - Intro to formal layout- multiply 2 digit by 1 digit - Multiply 2 digit by 1 digit- correspondence problems

	- Find 10 or 100 more or less than a given number - $3,4 \times$ tables x and \div missing number problems - Missing number problems using hundreds		properties of 2D shapes	- Multiply 2 digit by 1 digit- integer scaling
Week 5	- Count in steps of 50, 100 forwards and backwards from any given number - +/- numbers to 100 - Find 10 or 100 more or less than a given number - $3,4,8 \mathrm{x}$ tables x and \div missing number recall - Missing number problems using hundreds		- Tell time to the nearest minute - Identify $1 / 2,1 / 4,3 / 4$ of a shape	- Comparing division statements using < > = and correct vocabulary: less than, greater than, equal to - Related multiplication calculations - Intro to formal layout- Divide 2 digits by 1 digit - Divide 2 digits by 1 digit - with exchanging - Divide 2 digits by 1 digit - problem solving
Week 6	- Count in steps of 2, 3, 5 and 10 forwards and backwards from any given number - $3,4,8 x$ tables x and \div -		- Tell time to the nearest minute - Identify $1 / 2,1 / 4,3 / 4$ of a shape	- Find $1 / 2,1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, object or quantity - Recognise the equivalence of $2 / 4$ and $1 / 2$ - Recognise unit fractions and non-unit fractions - Count up and down in tenths, recognise that tenths arise when objects/amounts are divided by 10 - Problem solve using tenths
Week 7	- Identify value of groups of coins - $3,4,8 \times$ tables x and \div	- Compare unit fractions - Count up and down in tenths	- Tell time to the nearest minute - Identify tenths -	- Compare and order unit fractions and fractions with the same denominators - Recognise, find and write fractions of a discrete set of objects- fractions with small denominators- practical - Recognise, find and write fractions of a discrete set of objects- fractions with small denominators- pictorial - Problem solve with fractions with small denominators - Recognise and show equivalent fractions with the small denominators
Week 8	- Identify value of groups of coins - $3,4,8 \times$ tables \times and \div	- Compare unit fractions - Count up and down in tenths	- Tell time to the nearest minute - Identify tenths of a shape	- Add fractions with the same denominator within one whole - Subtract fractions with the same denominator within one whole - Problem solve with adding and subtracting fractions with small denominators - Practical: combine amounts to make a particular value - Add coins using $£$ and p in practical settings
Week 9	- Count in steps of 2, 3, 5 and 10 forwards and	- Count up and down in tenths	- Tell time to the nearest minute	- Subtract coins using $£$ and p in practical settings - Add and subtract in a practical setting giving change

	backwards from any given number - Identify value of groups of coins - Describe positions and movement incl. turns - $3,4,8 \times$ tables \times and \div	- Compare values e.g. $127 \ldots £ 1.16$	- Describe position, directions and movement e.g. half, quarter and three-quarter turns	- Compare and order length using < > = (incl. problem solving) - Compare and order mass using <> = (incl. problem solving) - Compare and order capacity using < > = (incl. problem solving)
Week 10	- Count in steps of $2,3,5$ and 10 forwards and backwards from any given number - Identify value of groups of coins - $3,4,8 \mathrm{x}$ tables x and \div - Compare lengths	- Compare values e.g. $127 \ldots £ 1.16$ - Compare lengths, mass, capacity - Identify correct tool to measure e.g what should I use to measure a door? A pencil? The playing field?	- Tell time to the nearest minute - Describe position, directions and movement e.g. half, quarter and three-quarter turns	- Measure lengths accurately in m - Measure lengths accurately in cm - Measure lengths accurately in mm - Problem solving with measure - Problem solve with the properties of 2D and 3D shapes
Week 11	- Identify value of groups of coins - $3,4,8 \times$ tables x and \div	- Compare values e.g. $127 \ldots £ 1.16$ - Compare lengths, mass, capacity Identify correct tool to measure e.g what should I use to measure a door? A pencil? The playing field?	- Tell time to the nearest minute	- Introduce perimeter using 2D shapes - Calculate perimeter - Calculate perimeter - Problem solve with perimeter
Week 12				Consolidation, addressing gaps from assessments, statistics - Interpret and present data using bar charts, pictograms and tables (if not covered in science, geography, history or other topic work)

	Oral / Mental Objectives		
	Number	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	- Identify 1 more or less than a given number - Read and write 1-100 in numerals and words - Count in steps of 2, 3, 5 and 10 forwards and backwards from any given number - Compare and order numbers to 100 using $<,>$, $=$ - Find 10 or 100 more or less than a given number	- Tell time to the nearest minute - True and False statementsproperties of 2D shapes	- Identify, represent and estimate numbers using different representations. - Estimate numbers on a number line. - Use place value and number facts to solve problems - Compare and order numbers to 1000 - Read and write numbers to 1000 in numerals and words
Week 2	- Count in steps of 50,100 forwards and backwards from any given number - +/-numbers to 20 - Find 10 or 100 more or less than a given number - $2,5,10 x$ tables x and \div - Missing number problems to 20	- Tell time to the nearest minute - True and False statementsproperties of 3D shapes	- Add three digit numbers using formal methods not exchanging - Add three digit numbers using formal methods exchanging - Subtract three digit numbers using formal methods not exchanging - Subtract three digit numbers using formal methods exchanging - Problem solve with addition and subtraction using a variety of contexts including missing number problems
Week 3	- Count in steps of 50,100 forwards and backwards from any given number - +/- numbers to 100 - Find 10 or 100 more or less than a given number - $3,4 \times$ tables x and \div - Missing number problems using hundreds	- Tell time to the nearest minute - True and False statementsproperties of 2D and 3D shapes	- Comparing multiplication statements using < > = and correct vocabulary: less than, greater than, equal to - Multiplication with formal method (three lessons) with reasoning Problem solving with multiplication- 2 step problems in a variety of contexts
Week 4	- Count in steps of 3, 4 and 8 forwards and backwards from any given number - +/- numbers to 100 - Find 10 or 100 more or less than a given number - $3,4,8 \mathrm{x}$ tables x and \div missing number problems - Missing number problems using hundreds	- Tell time to the nearest minute - Identify $1 / 2,1 / 4,3 / 4$ of a shape	- Comparing division statements using < > = and correct vocabulary: less than, greater than, equal to - Division with formal methods (three lessons) with reasoning Problem solving with division- 2 step problems in a variety of contexts
Week 5	- Count in steps of 3,4 and 8 forwards and backwards from any given number - +/- numbers to 100 - Find 10 or 100 more or less than a given number - $3,4,8 \mathrm{x}$ tables x and \div missing number recall - Missing number problems using hundreds	- Tell time to the nearest minute - Identify $1 / 2,1 / 4,3 / 4$ of an amount	- Recognise equivalent fractions - Problem solve using fractions - Compare and order unit fractions and fractions with the same denominators - Recognise, find and write fractions of a discrete set of objects- fractions with small denominators- pictorial - Problem solve with fractions with small denominators

Week 6	- 2, 5, 10 times tables - $3,4,8 \mathrm{x}$ tables x and \div - Add and subtract numbers to 100	- Tell time to the nearest minute - Add fractions with the same denominator	- Add fractions with the same denominator within one whole - Subtract fractions with the same denominator within one whole - Problem solve with adding and subtracting fractions with small denominators - Practical: combine amounts to make a particular value - Add coins using $£$ and p in practical settings
Week 7	- Identify value of groups of coins - $3,4,8 \times$ tables \times and \div - Compare unit fractions - Count up and down in tenths	- Tell time to the nearest minute - Subtract fractions with the same denominator - Identify tenths	- To estimate, compare and order length using < > = (incl. problem solving, addition and subtraction) - To estimate, compare and order mass using < > = (incl. problem solving, addition and subtraction) - To estimate, compare and order capacity using < > = (incl. problem solving, addition and subtraction) - Problem solving using different units of measure - Problem solve with the properties of 2D and 3D shapes
Week 8	- Identify value of groups of coins - $3,4,8 \times$ tables x and \div - Compare unit fractions - Count up and down in tenths	- Convert analogue and digital time12 hr - Add and subtract fractions with the same denominator - Identify tenths of a shape	- Know the number of seconds in a minute, days in a month, year and leap year - Tell and write the time from an analogue clock- 12 hr - Tell and write the time from an analogue clock 24 hr - Compare durations of events e.g. calculate the time taken to complete a particular event or task. - Problem solve with time
Week 9	- Count in steps of 2, 3, 5 and 10 forwards and backwards from any given number - Identify value of groups of coins - Describe positions and movement incl. turns - $3,4,8 \times$ tables \times and \div - Count up and down in tenths - Compare values e.g. $127 \ldots £ 1.16$	- Convert analogue and digital time24hr - Describe position, directions and movement e.g. half, quarter and three-quarter turns	- Identify angles, recognize that two right angles make a half turn, three make three quarters of a turn and four complete a turn - Identify if an angle is greater than or less than a right angle - Reasoning with angles - Use mathematical vocab to describe position, direction and movement, incl movement in a straight line and distinguishing between rotation as a turn in terms of right angles for quarter, half and three quarter turns- clockwise and anti-clockwise - Map work using directions
Week 10	- Count in steps of 2, 3, 5 and 10 forwards and backwards from any given number - Identify value of groups of coins - $3,4,8 \mathrm{x}$ tables x and \div - Compare lengths	- Convert analogue and digital time24hr - Describe position, directions and movement e.g. half, quarter and threequarter turns	Consolidation, addressing gaps from assessments, statistics - Interpret and present data using bar charts, pictograms and tables - Solve one-step and two-step questions (e.g. 'How many more?' and 'How many fewer?' using information presented in scaled bar charts, pictograms and tables (if not covered in science, geography, history or other topic work)

Year 4 Aut Term (not including problem solving day, TT Rock stars and fortnightly timed Arithmetic test)

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	Read write numbers 0-1000	Counting back to include negative numbers	2d names - square, rectangle, triangle, circle, polygon, quadrilateral, trapezium, parallelogram, kite, octagon, hexagon	Use <,>, = to compare number to 1000 Compare numbers beyond 1000 Represent each digit - start 2 digit, move to 3 digit Find $\mathbf{1 0 0 0}$ more or less than a given number
Week 2	$\begin{gathered} \hline 2,5,10,3 \\ \text { timetables } \end{gathered}$	Rounding numbers	2d properties - sides, vertices, lines of symmetry, parallel sides, right angles	Count backwards through zero to include negative numbers
Week 3	$2,5,10,3$ timetables	Rapid recall of number facts	Tell time revisit $1 / 4$ to and 1/4past	Round numbers to nearest $\mathbf{1 0} \mathbf{1 0 0}$ or $\mathbf{1 0 0 0}$ - include money e.g round $£ 46$ or $£ 654$ Read roman numerals (1 day)
Week 4	Place number on blank number line	Rapid recall of facts linked to known facts ($7+3=10$ so $27+3=30$)	Clock in roman numerals	I can add two 2 digit numbers using informal /formal method I can add two 3 digit numbers using informal / formal method I can add 4 digit numbers using a formal method I can estimate before adding (using rounding from previous wk) (see calculation policy for informal and formal methods for Yr 4)
Week 5	Count in 4s	Recognise coins and notes	Clock in roman numerals	I can subtract two $\mathbf{2}$ digit numbers using informal /formal method I can subtract two 3 digit numbers using informal / formal method I can subtract 4 digit numbers using a formal method I can estimate before I subtract (using rounding from previous wk) (see calculation policy for informal and formal methods for Yr 4)
Week 6	Count in 50s Count in 100s	Multiply 2 and 3 digit numbers by by 10	Names of 3d shapes - cube, cuboid, sphere, triangular based pyramid, square based pyramid, triangular prism, prism, cone, cylinder	I can add / subtract 4 digit numbers using money including giving change (not decimals) I can choose the appropriate operation when calculating
Week 7	Count in 4s link to 8s	Find factor families	Properties of 3d shapes - vertices, face, edge, cross section, prism	I can multiply and divide by 10 and 100, explaining the affect on each digit I can divide amounts of money by 10 and 100
Week 8	Multiply by 10, 100, 1000	Find $1 / 2,1 / 4,2 / 4,3 / 4$ of a shape	Tell time to nearest 5 mins	I can find fractions of amounts /quantities $-1 / 2,1 / 4,2 / 4,3 / 4,1 / 3,1 / 5,2 / 5$ etc I can solve problems involving fractions, using the bar model to help
Week 9	Divide by 10, 100, 1000	Add / subtract 3 numbers	Tell time to nearest 5 mins	I can convert between km to m I can convert between $£$ and pence I can add and subtract with length and money $(\mathrm{m}, \mathrm{cm}, \mathrm{mm})$,

Week 10	Times tables 3s	Negative numbers forward and backwards	2d names - square, rectangle, triangle, circle, polygon, quadrilateral, trapezium, parallelogram, kite, octagon, hexagon	I can calculate the perimeter of squares and rectangles by counting squares I can calculate the area of squares and rectangles by counting squares
Week 11	Times tables 3s and 6s	Rapid recall of number facts to $\mathbf{1 0 0}$	Names of 3d shapes - cube, cuboid, sphere, triangular based pyramid, square based pyramid, triangular prism, prism, cone, cylinder	I can identify 2d shapes and their properties including number of side, number of vertices, number of right angles, pairs of parallel sides, I can compare 2d shapes explaining similarities and differences
Week 12	Fractions of amounts	Number patterns	Tell time to nearest 5 mins	I can identify 3 d shapes and their properties including shape of and number of faces, vertices, cross section, I can compare 3d shapes explaining similarities and differences
Week 13	Conversions km to m and m to km	Find difference between two different times	Conversion of days to weeks, months to years	I can tell the time to the nearest 5 minutes I can convert between minutes and hours.
Week 14	Rapid recall of number facts to 100	Add to a time (what is 90 mins later than?)	Conversion of weeks per year, days per week etc	I can interrupt data and answer 1 or 2 step questions from bar charts, pictograms and tables I can present data in bar charts, pictograms and tables

Year 4 Spring Term (not including problem solving day, TT Rock stars and fortnightly timed Arithmetic test)

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	Find $1 / 2,1 / 4,1 / 3,2 / 4$ of shape and amount	Counting forward and back in decimals (hundredths and tenths)	Names of 2 d and 3d shapes	Multiply by 10 \& 100 (including decimals) Divide by 10 \& 100 (including decimals)
Week 2	Multiples of 25/100	Compare and order decimals using < = >	Properties of 2D shapes	Convert CM to M and M to CM Convert Gr to Kg and Kg to Gr
Week 3	Times tables and division facts	Round decimals to nearest whole Find fraction families	Properties of 3D shapes	Find equivalent Fractions and compare fractions - using diagrams and then calculations ($1 / 4,1 / 2,3 / 4,2 / 4,1 / 3$) Find equivalent fractions to decimals

Week 4	Times tables and division facts	Compare numbers to same decimal place Convert fractions to decimals	Tell time to 5 mins analogue and digital	Simplify fractions Find equivalent fractions to decimals
Week 5	Times tables and division facts	Remainders Multiply 3 numbers	Tell time to 5 mins analogue and digital	Find fractions of amounts, including length, weight and money to $\mathbf{2}$ decimal places
Week 6	Round to nearest 10/100/1000	Recognise coins and notes	Read 24 hour clock	Multiply 2 and $\mathbf{3}$ digit numbers by 1 digit using the grid and column methods of multiplication Understand and use distributive law to multiply 2 digit by 1 digit
Week 7	Order and compare fractions and decimals	Add / subtract 2 or $\mathbf{3}$ coins	Read 24 hour clock	Find division with remainders by counting up Find division with remainders by using the short method
Week 8	Times tables and division facts	Find factor families	Identify different triangles and quadrilaterals	Add 3 or 4 different amounts of money, including pounds and pence Solve 1 and 2 step addition problems involving money
Week 9	Multiply by 10/100	Multiply and divide by 0 and 1	Identify acute / obtuse angles	Solve $\mathbf{3}$ digit subtract $\mathbf{2}$ digit calculations (incl crossing the boundary) Find change up to $£ 10$ Solve 1 and 2 step subtraction problems involving money
Week 10	Divide by 10/100	Use inverse to calculate multiplication and division	Read 24 hour clock	Read $\mathbf{2 4}$ hour clock, read analogue clock Solve problems converting hours in day, mins in hour, seconds in mins, months in years, days in week
Week 11	Times tables and division facts	Rapid recall addition and subtraction	Position and direction up/down/left/right $1 / 4,1 / 2$ turns	Identify lines of symmetry of 2d shapes in different orientations
Week 12	Revisit Roman numerals	Equivalent fractions and decimals	Read coordinates	Plot coordinates of given polygon, describe position of polygon in first quadrant Find missing coordinates of given polygon Translate shapes and describe new position using up/down/left/right

Year 4 Summer Term (not including problem solving day, TT Rock stars and fortnightly timed Arithmetic test)

	Oral / Mental Objectives			Main Teaching (remember to include reasoning and empty boxes)
	Revisit	New	Time / Shape	
$\begin{gathered} \hline \text { W } \\ \text { e } \\ \text { e } \\ \text { k } \\ 1 \end{gathered}$	Times tables	Counting in negative numbers	Read analogue clock	Count backwards through zero to include negaitive numbers (e.g find difference between two numbers on a number line) Solve comparison, sum and difference problems using information presented in bar charts / pictograms/ tables and other graphs (complete on Thurs / Fri using negative numbers as well)
$\begin{gathered} \hline \text { w } \\ \text { e } \\ \text { e } \\ \text { k } \\ 2 \end{gathered}$	Times tables	Count in multiples of $\mathbf{2 5}$	Revisit names of 2d shapes an properties	Add / subtract $\mathbf{2}$ four digit numbers (for GD miss digits in calculations, for Exp present calculations in different ways, as seen in Arithmetic paper) Solve addition and subtraction two step problems. Decide which operation and methods to use
$\begin{gathered} \mathrm{w} \\ \mathrm{e} \\ \mathrm{e} \\ \mathrm{k} \\ 3 \end{gathered}$	Rounding to 1 decimal place and whole number	Count in multiples of 1000	Revisit quadrilateral, polygons etc	Identify acute and obtuse angles Compare and order angles up to two right angles by size Complete a simple symmetric figure with respect to a specific line of symmetry
$\begin{gathered} \hline \text { w } \\ \text { e } \\ \text { e } \\ \text { k } \\ 4 \end{gathered}$	Time tables	Count in multiples of 9 - can they see a pattern in the digits to help to help?	Revisit triangles and angles from pervious week	Compare and classify geometric shapes, including triangles and quadrilaterals based on properties and size. (Use a Venn diagram and Carol Diagrams for this. For GD make criteria more complex or children choose own criteria, for Exp give criteria) Plot specified points and draw sides to complete given polygon (E.g see Yr 6 SATs questions)
W e e k d	Factor pairs	Count in multiples of 3 - can they see how to identify a multiple of 3 (e.g 114 is a multiple of 3 because ...)	Read analogue clock	Find common equivalent fractions Find fractions of quantities (e.g $3 / 4$ of 120 m or $1 / 4$ of $£ 80$) (Have the need to convert first e.g $1 / 2$ of 0.8 m or $3 / 4$ of 1.2 kg - this will need modelling) Find decimal equivalence $-1 / 2,1 / 4,3 / 4$ (link this with finding fractions of quantities e.g what is 0.25 of $£ 32$?) Solve simple measures and money problems involving and decimals to $\mathbf{2}$ decimal places.

	Half Term			
W e e k 6	Fractions equivalence	Count in multiples of 6 - can they see how to identify linked to multiple of 3 ?	Convert analogue to 12hr clock	Recognise and use factor pairs and commutativity (e.g $4+2 \times 3$) Multiply $\mathbf{2}$ digit and $\mathbf{3}$ digit numbers by $\mathbf{1}$ digit (For GD remove digits from a completed calculation and reason why) Divide 4 digit by 1 digit number using formal written method (For GD remove digits from a completed calculation and reason why) Solve 2 step problems involving multiplication or division (include reasoning with multiplication and division in questions modelled and given)
W e e k 7	Fractions find fractions of amounts	Round decimals	Convert analogue clock to 24 hr	Convert time from analogue clock to 12 and 24 hour clock Convert hours to minutes Convert minutes to seconds Convert years to months etc (Complete these in problem solving context, not just as standalone conversions)
W e e k 8	Time tables	Round decimals	Convert analogue clock to 24 hr	Solve simple measure and money problems - revisit all four operations, fractions and decimals within this. Interpret and present discrete and continuous data using appropriate methods charts / graphs
W e e k 9	Time tables	Revision misconceptions from previous two terms prior to assessment Revisit anything from Autumn Term not visited in Spring or Summer		
W e e k 1 0	Mulitly and divide by 10, 100 and 1000	Conversions	Days, weeks, years, months, hour, second conversions	Interpret and present discrete and continuous data using appropriate methods charts / graphs Solve comparison, sum and difference problems using information presented in bar charts / pictograms/ tables and other graphs
W e e k 1 l				Transition to new classes

Year 5 Aut Term (not including problem solving day, TT Rock stars and fortnightly timed Arithmetic test)

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	Read write numbers 0-1000	Counting forward and back in steps of power of 10	2d names - square, rectangle, different triangles, circle, polygon, quadrilateral, trapezium, parallelogram, kite, octagon, hexagon	Using $=,<,>$ Read, write and compare numbers to $1,000,000$ in numerals and words Read roman numerals to $1,000(\mathrm{M})$ and Recognise years written in Roman Numerals Recognise the value of each digit up to $1,000,000$
Week 2	Fond 10 / 100 / 1000 more or less than given number	Rounding numbers to 100, 1000, 10,000	2d properties - sides, vertices, lines of symmetry, parallel sides, right angles	
Week 3	Timetables rapid recall to 12×12	Count forward and back with positive and negative number	Revisit telling time to nearest minute on analogue clock	Round numbers up to $1,000,000$ to nearest 10,100 or 1000, 10,000 and 100,00 - include money e.g round $£ 46,544$ or $£ 654,232$
Week 4	Place number incl negative numbers on blank number line	Add and subtract 3 digit and ones and 10's	Revisit telling time to nearest minute on analogue clock	I can add whole numbers with more than 4 digits using a formal method I can estimate before adding (using rounding from previous wk) (see calculation policy for informal and formal methods for Yr 5) I can solve problems including missing numbers
Week 5	Counting forward and back in steps of power of 10	Add and subtract 3 digit and 10's and 100s	Convert times to digital, 24hr and analogue	I can subtract whole numbers with more than 4 digits using a formal method I can estimate before I subtract (using rounding from previous wk) (see calculation policy for informal and formal methods for Yr 4) I can solve problems including missing numbers
Week 6	Timetables rapid recall to 12×12	I can Recognise square numbers	Names of 3d shapes - cube, cuboid, sphere, triangular based pyramid, square based pyramid, triangular prism, prism, cone, cylinder	I can add / subtract 4 digit numbers using money including giving change (not decimals) I can choose the appropriate operation when calculating I can solve problems including missing numbers
Week 7	I can Recognise square numbers	Multiply by 10, 100, 1000	Properties of 3d shapes - vertices, face, edge, cross section, prism	I can multiply and divide by 10,100 and 1000 explaining the affect on each digit I can multiply and divide amounts of money by 10, 100 and 1000
Week 8	Timetables rapid recall to 12×12	Add and subtract fractions with the same denominator	Convert times to digital, 24hr and analogue	I can find fractions of amounts /quantities I can solve problems involving fractions
Week 9	Count forward and back with positive	Add / subtract numbers mentally	Conversion between days / hours / mins	I can add and subtract with length and weight

	and negative number			I can add and subtract with money (m, cm, mm), giving change where appropriate
Week 10	Fractions of amounts	I can Recognise cubed numbers	2d names - square, rectangle, triangle, circle, polygon, quadrilateral, trapezium, parallelogram, kite, octagon, hexagon	I can calculate the perimeter of shapes in $C M$ and M I can calculate the area of shapes in CM and M I can estimate the area of irregular shapes
Week 11	Timetables rapid recall to 12×12	Making turns $1 / 2,1 / 4,3 / 4$	Names of 3d shapes - cube, cuboid, sphere, triangular based pyramid, square based pyramid, triangular prism, prism, cone, cylinder	I can compare and classify geometric shapes based on their properties including different quadrilaterals and triangles
Week 12	I can Recognise cubed numbers	Number patterns	Conversion between days / weeks/months /years	I can identify right angles, recognise right angles make a $1 / 2$ turn, three make $3 / 4$ turn and 4 make complete turn I can say if an angle is greater or less than a right angle
Week 13	Calculate area of squares and rectangles	Find difference between two different times	Revisit telling time to nearest minute on analogue clock	Plot specific points and draw sides to complete a given polygon using coordinates Predict missing coordinates using known facts
Week 14	Rapid recall of number facts	Add / subtract numbers mentally	Conversion between days / weeks/months /years	I can interpret and present discrete and continuous data including time graphs I can solve comparison, sum and difference problems using information in bar charts, tables and other graphs

Year 5 Spring Term (not including problem solving day, TT Rock stars and fortnightly timed Arithmetic test)

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	Multiply whole numbers by 10, 100, 1000	Find all factor pairs of a number	Read analogue clocks to the nearest minute.	Place value - rounding to the nearest $10,100,1000,10,000$ and 100,000 Read negative numbers, count forward and back between negative and positive numbers including through 0
Week 2	Divide numbers by 10, 100, 1000	Identify multiples of a given number	Read analogue clocks to the nearest minute.	Multiplying $\mathbf{4}$ digit numbers by a 1 or $\mathbf{2}$ digit number using a formal method including money.
Week 3	Counting forward and back in negative numbers	$\begin{aligned} & \text { Convert between } \mathrm{cm} / \\ & \mathrm{m}, \mathrm{ml} / \mathrm{l} \end{aligned}$	Read analogue clocks to the nearest minute.	Divide 4 digit number by 1 digit number suing a formal method of short division calculating the remainder (remainders as decimal/ fraction)

Week 4	Revisit up to 12 x 12	Identify prime numbers to 100	Convert 24 hour to analogue clock times.	Convert between different units of metric measure
Week 5	Add and subtract fractions with the same denominator	$\begin{gathered} \text { Add numbers mentally } \\ \text { e.g. } 12,462+2,300 \\ =14,762 \end{gathered}$	Convert 24 hour to analogue clock times.	Solve problems involving converting between units of time.
$\begin{gathered} \text { Week } \\ 6 \end{gathered}$	Revisit up to $12 \times$ 12	Subtract numbers mentally $12,462-2,300$	Revisit properties of 2D shapes	Data - read and interpret information in tables and line graphs to solve comparison, sum and difference
Week 7	Find all factor pairs of a number Identify multiples of a given number	Read and order numbers to 3 decimal places.	Revisit properties of 3D shapes	Compare and order fractions whose denominators are all multiples of the same number Recognize mixed numbers and improper fractions and convert from one to another e.g. $2 / 5+4 / 5=6 / 5=11 / 5$
$\begin{gathered} \text { Week } \\ 8 \end{gathered}$	Identify prime numbers to 100	Know decimal, fraction \& percentage equivalence	Recognize acute, obtuse and reflex angles	Read and write decimal numbers as a fraction e.g. $0.71=71 / 100$
Week 9	Counting forward and back in negative numbers		Recognize acute, obtuse and reflex angles	Solve problems that require knowing decimals and percentage equivalence
$\begin{gathered} \text { Week } \\ 10 \end{gathered}$	Add numbers mentally e.g. $\begin{gathered} 12,462+2,300 \\ =14,762 \end{gathered}$	Recognize years written in Roman numerals	Convert between days, months \& years	Draw angles and measure them in degrees to the nearest degree. Compare acute, obtuse and reflex angles
Week 11	Subtract numbers mentally $12,462-2,300$		Convert between days, months \& years	Use the properties of rectangles to deduce elated facts and missing lengths and angles.
Week 12	Revisit fractions			Calculate the area of regular shapes, estimate the areas of irregular shapes

Year 5 Summer Term (not including problem solving day, TT Rock stars, Mathletics and fortnightly timed Arithmetic test)

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	$\begin{gathered} \text { Multiply \& Divide } \\ \text { numbers by 10, } \\ 100,1000 \end{gathered}$	Find all factor pairs of a number	Read analogue clocks to the nearest minute.	Solve number problems \& practical problems involving place value, negative numbers, rounding and estimating.
Week 2	Sqaured and cubed numbers	Identify prime \& composite numbers to 100	Read analogue clocks to the nearest minute.	Estimate before adding and subtracting whole numbers. Add and subtract whole numbers with more than 4 digits - including use of formal written methods and missing numbers.
Week 3	Counting forward and back in negative numbers	Adding fractions with the same denominator.	Read analogue clocks to the nearest minute.	Solve problems involving addition and subtraction, multiplication and division, and a combination of these. Solve problems involving multiplication and division using knowledge of factors and multiples, squares and cubes.
Week 4	Revisit up to 12 x 12	Converting improper to mixed fractions	Convert 24 hour to analogue clock times.	Add and subtract fractions with the same denominator and denominators that are multiples of the same number.
Week 5	Add and subtract fractions with the same denominator	Know decimal, fraction \& percentage equivalence	Convert 24 hour to analogue clock times.	Multiply proper fractions and mixed numbers by whole numbers supports by materials and diagrams.
Week 6	Revisit up to $12 \times$ 12	Subtract numbers mentally $12,462-2,300$	Convert between days, months \& years	Read, write, order and compare numbers with up to three decimal places. Round decimals with two decimal places to the nearest whole number and to one decimal place. Solve problems involving number up to three decimal places
Week 7	Identify multiples of a given number	$\begin{gathered} \text { Add numbers mentally } \\ \text { e.g. } 12,462+2,300 \\ =14,762 \end{gathered}$	Convert between days, months \& years	Recognise the per cent \% symbol and understand that per cent relates to 'number of parts per hundred' Write percentages as a fraction with denominator 100 and as a decimal.
Week 8	Identify prime numbers to 100	Convert between cm / m, ml/l	Names of 2D and 3D shapes	Understand and use appropriate equivalences bertween metric units and common imperial units such as inches, pounds and pints.
Week 9	Counting forward and back in negative numbers	Areas to be revisited.	Symmetry of 2D shapes	Estimate volume (for example, using 1 cm 3 blocks to build cuboids (including cubes)) and capacity (for example using water)

Week 10	Add numbers mentally e.g. $12,462+2,300$ $=14,762$	Recognize years written in Roman numerals	Recognize acute, obtuse and reflex angles	Review and recap the properties of 2D and 3D shpes
Week 11	Subtract numbers mentally $12,462-2,300$	Areas to be revisited.	Recognize acute, obtuse and reflex angles	Idenfity, describe and represent the position of a shape following a reflextion or translation, using the appropriate language, and know that the shape has not changed.
Week 12	Revisit fractions			

Year 6 Aut Term (not including problem solving day, TT Rock stars and fortnightly timed Arithmetic test)

	Oral / Mental Objectives			
	Revisit / New		Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	Multiply and divide numbers mentally drawing upon known facts.	Count forwards or backwards in steps of powers of 10 for any given number up to 1000000	Read, write and convert time between analogue and digital 12- and 24-hour clocks.	Round any whole number to a required degree of accuracy. Read, write, order and compare numbers up to 10000000 and determine the value of each digit. Identify the value of each digit in numbers given to three decimal places. Identify common factors, common multiples and prime numbers.
Week 2	Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero.	Count forwards or backwards in steps of powers of 10 for any given number up to 1000000	Read, write and convert time between analogue and digital 12- and 24-hour clocks.	
Week 3	multiply and divide numbers by 10, 100 and 1000 giving answers up to three decimal places	Use negative numbers in context, and calculate intervals across zero.	Read, write and convert time between analogue and digital 12- and 24-hour clocks.	Use negative numbers in context, and calculate intervals across zero. Convert between different units of metric measure (for example, $\mathrm{km} / \mathrm{m} ; \mathrm{cm} / \mathrm{m} ; \mathrm{cm} / \mathrm{mm}$; $\mathrm{g} / \mathrm{kg} ; \mathrm{l} / \mathrm{ml}$). Solve number and practical problems that involve negative numbers and conversions of measure

Week 4	Use negative numbers in context, and calculate intervals across zero.	```Round any whole number to a required degree of accuracy.```	Read, write and convert time between analogue and digital 12- and 24-hour clocks.	Add whole numbers with more than 4 digits. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
Week 5	Multiply and divide numbers mentally drawing upon known facts.	Recognise equivalent fractions	Know and describe properties 2D shape	Subtract whole numbers with more than 4 digits. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
Week 6	Multiply and divide numbers mentally drawing upon known facts	Recognise equivalent fractions	Know and describe properties 2D shape	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. Solve problems involving converting between units of time. Interpret pie charts and line graphs and use these to solve problems. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
Week 7	Multiply and divide numbers mentally drawing upon known facts.	Generate and describe linear number sequences.	Know and describe and compare properties of a circle and know the diameter is doubles the radius	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. Multiply one-digit numbers with up to two decimal places by whole numbers. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
Week 8	Multiply and divide numbers mentally drawing upon known facts.	Generate and describe linear number sequences.	Know, describe and compare properties of triangles	Divide numbers up to 4 digits by a two-digit number and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Use written division methods up to 2 decimals places Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
Week 9	Compare and order fractions whose denominators are all multiples of the same number	Generate and describe linear number sequences.	Calculate missing angles of triangle	Solve problems involving multiplication and division Solve problems which require answers to be rounded to specified degrees of accuracy. Use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling. Calculate and interpret the mean as an average.

Week 10	Add and subtract fractions with the same denominator.	Generate and describe linear number sequences.	Calculate missing angles of triangle	Compare and order fractions, including fractions >1. Use common factors to simplify fractions; use common multiples to express fractions in the same denomination
Week 11	Add and subtract fractions with the same denominator.	Identify common factors, common multiples and prime numbers.	Know, describe and compare properties 3D shape and their nets	Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions. Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
Week 12	Identify common factors and multiples	Recall and use equivalences between simple fractions, decimals and percentages,	Know, describe and compare properties 3D shape and their nets	Multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 4$ iN $1 / 2=1 / 8$ Divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6]$.
Week 13	Identify common factors and multiples	Multiply onedigit numbers with up to two decimal places by whole numbers.	Know, describe, and compare properties 3D shape and their nets	Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples. Solve problems which require answers to be rounded to specified degrees of accuracy.
Week 14	Identify common factors and multiples	Use written division methods up to 2 decimals places	Calculate area of compound shapes	Associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8].

Year 6 Spring Term (not including problem solving day, TT Rock stars and fortnightly timed Arithmetic test)

	Oral / Mental Objectives			
	Revisit	New	Time / Shape	Main Teaching (remember to include reasoning and empty boxes)
Week 1	Read, write, order and compare numbers up to 10 000000 and determine the value of each digit	Multiply and divide numbers by 10, 100 and 1000 giving answers up to three decimal places.	Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	Use negative numbers in context, and calculate intervals across zero Describe positions on the full coordinate grid (all four quadrants).

Week 2	Read, write, order and compare numbers up to 10 000000 and determine the value of each digit	Multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places.	Use the properties of rectangles to deduce related facts and find missing lengths and angles.	Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison. Use of percentages for comparison. Interpret pie charts and line graphs and use these to solve problems. Construct pie charts and line graphs
Week 3	Describe positions on the full coordinate grid (all four quadrants).	Write percentages as a fraction with denominator 100, and as a decimal	Use the properties of rectangles to deduce related facts and find missing lengths and angles.	Enumerate possibilities of combinations of two variables Solve problems involving similar shapes where the scale factor is known or can be found. Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts.
Week 4	Add and Subtract fractions with different donominators	Recognise equivalent fractions	Distinguish between regular and irregular polygons based on reasoning about equal sides and angles	Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons Draw nets of 3D shapes
Week 5	Multiply pairs of fractions	Recognise equivalent fractions	Distinguish between regular and irregular polygons based on reasoning about equal sides and angles	Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles. Draw 2D shapes using given dimensions and angles Draw given angles, and measure them in degrees (0).
Week 6	Divide fractions with whole numbers	Calculate perimeters of shapes	Know and describe and compare properties of a circle and know the diameter is doubles the radius	Describe positions on the full coordinate grid (all four quadrants). Draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
Week 7	Calculate and interpret the mean as an average.	Calculate Area of shapes	Recognise Nets of 3d shapes	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Solve problems which require answers to be rounded to specified degrees of accuracy. Use simple formulae. Express missing number problems algebraically.

Week 8	Calculate and interpret the mean as an average.	Calculate Area of shapes	Recognise Nets of 3d shapes	Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates Solve problems which require answers to be rounded to specified degrees of accuracy. Use simple formulae. Express missing number problems algebraically.
Week 9	Multiply and divide numbers mentally drawing upon known facts	Convert between miles and kilometres	Convert units of time	. Interpret pie charts and line graphs and use these to solve problems. Solve comparison, sum and difference problems using information in a line graph. Calculate and interpret the mean as an average
Week 10	Multiply and divide numbers mentally drawing upon known facts	Convert between miles and kilometres	Convert units of time	Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate. Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places. Solve problems involving converting between units of time. Convert between miles and kilometers
Week 11	Use negative numbers in context, and calculate intervals across zero	Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts	Solve problems but converting units of time - e.g timetables	Recognise that shapes with the same areas can have different perimeters and vice versa. Recognise when it is possible to use formulae for area and volume of shapes. Calculate the area of parallelograms and triangles
Week 12	Use negative numbers in context, and calculate intervals across zero	Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts	Solve problems but converting units of time - e.g timetables	Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm3) and cubic metres (m3), and extending to other units [for example, mm3 and km3].

Year 6 Summer Term (not including problem solving day, TT Rock stars and fortnightly timed Arithmetic test)

Week 5	Read, write, order and compare numbers up to 10 000000 and determine the value of each digit.	Identify common factors, common multiples and prime numbers.	Find missing angles.	Recognise when it is possible to use formulae for area and volume of shapes. Recognise that shapes with the same areas can have different perimeters and vice versa. Calculate the area of parallelograms and triangles.
Week 6	Round any whole number to a required degree of accuracy	Convert between different units of measure	Describe positions on the full coordinate grid (all four quadrants	Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm3) and cubic metres (m3), and extending to other units [for example, mm3 and km3].
Week 7	Perform mental calculations, including with mixed operations and large numbers	Use simple formulae.	Describe positions on the full coordinate grid (all four quadrants	Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
Week 8	Perform mental calculations, including with mixed operations and large numbers	Use simple formulae.	Convert units of time	Express missing number problems algebraically. Find pairs of numbers that satisfy an equation with two unknowns.
$\begin{gathered} \text { Week } \\ 9 \end{gathered}$	Compare and order fractions, including fractions >1	Multiply one-digit numbers with up to two decimal places by whole numbers.	Convert units of time	Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison.
$\begin{gathered} \text { Week } \\ 10 \end{gathered}$	Calculate and interpret the mean as an average.	Convert between different units of measure	Translate simple shapes on the coordinate plane, and reflect them in the axes.	Interpret pie charts and line graphs and use these to solve problems. Use simple formulae. Use negative numbers in context, and calculate intervals across zero.
Week 11		Convert between different units of measure	Translate simple shapes on the coordinate plane, and reflect them in the axes.	Solve number and practical problems invloing decimals, fractions, numbers to 10,000, 000 and negative numbers
$\begin{gathered} \hline \text { Week } \\ 12 / \\ 13 \\ \hline \end{gathered}$	Transition Units with Passmores			

Year 1 Number and Place Value

	Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions
$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 3 \end{aligned}$	Sufficient evidence shows the ability to: - Count to and across 20, forwards and backwards, beginning with 0 or 1 , or from any given number. - Count, read and write numbers to 10 in numerals. \square Given a number, identify 1 more and 1 less. \square Identify and represent numbers using objects and pictorial representations. \square Use the language of: more than, less than (fewer), most, least - Read and write numbers from 1 to 10 in numerals and words.	Sufficient evidence shows the ability to: Find the total of two groups by combining. \square Calculate subtractions through taking away. \square Represent addition and subtraction calculations using objects and pictorial representations. \square Know and use addition and subtraction number facts to 5 and some facts to 10 . \square Add and subtract one-digit numbers. \square Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations.	Sufficient evidence shows the ability to: Begin to recall doubles and halves of numbers to 5 . \square Count in multiples of 2 and 10 . \square Solve simple problems involving grouping and sharing with pictorial representations and arrays with the support of the teacher.	Sufficient evidence shows the ability to: - Recognise, find and name a half as 1 of 2 equal parts of an object, shape or quantity.

Year 1 Number and Place Value

	Number and Place Value	Addition and Subtraction
	Sufficient evidence shows the ability to: Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number. - Count, read and write numbers to 100 in numerals; count in multiples of 2 s , 5 s and 10 s . G Given a number, identify 1 more and 1 less. \square Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least. \square Read and write numbers from 1 to 20 in numerals and words.	Sufficient evidence shows the ability to: - Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs. \square Represent and use number bonds and related subtraction facts within 20. \square Add and subtract one-digit and two-digit numbers to 20 , including 0. \square Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = ? -9 .

Multiplication and Division

 Sufficient evidence shows the ability to:- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Fractions

Sufficient evidence shows the ability to:

Recognise, find and name a half as 1 of 2 equal parts of an object, shape or quantity.
\square Recognise, find and name a quarter as 1 of 4 equal parts of an object, shape or quantity.

Year 1 Number and Place Value

Number and Place Value

All aspects of number and place value at the national standard are embedded.

Sufficient evidence shows the ability to:Demonstrate fluency when counting to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number and when counting in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Consistently identify 1 more and 1 less from a given number and use in solving problems.Identify and represent numbers using increasingly complex representations including the number line.
\square Consistently use the language of: equal to, more than, less than (fewer), most, least accurately when comparing numbers and expressions.

Addition and Subtraction

All aspects of addition and subtraction at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.
\square Recall and use number facts to 20 fluently and use these to derive new unknown facts.
\square Add and subtract one-digit and two-digit numbers to 20 mentally.Solve two-step problems that involve addition and subtraction, using concrete objects and pictorial representations.

- Solve missing number problems using a wider range of numbers.

Multiplication and Division

All aspects of multiplication and subtraction at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Count in $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 from 0 to answer questions involving x facts.
\square Begin to understand division as the inverse of multiplication and use facts in problem solving.
Recall doubles and halves of numbers to 20.
\square Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays.

Fractions

All aspects of fractions at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Recognise, find and name a half and quarter of a length, shape, set of objects or quantity.

Year 1 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement
	Sufficient evidence shows the ability to: Use the language of measures to make direct comparisons between $2 / 3$ objects. \square Solve simple measure problems (length, mass/weight, capacity and volume and time) in a practical context using direct comparison and nonstandard units. Recognise and sort coins to $£ 1$. Use language related to time e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening. Tell the time to the nearest hour.	Sufficient evidence shows the ability to: \square Recognise and name some common 2-D and 3- D shapes, including: 2-D shapes [for example, rectangles (including squares), circles and triangles] 3-D shapes [for example, cuboids (including cubes), pyramids and spheres] \square Sort shapes based on simple properties.	Sufficient evidence shows the ability to: Describe position, direction and movement, including whole, half -turns.

Year 1 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement
	Sufficient evidence shows the ability to: \square Compare, describe and solve practical problems for: lengths and heights [for example, long/short, longer/shorter, tall/short, double/half] mass/weight [for example, heavy/light, heavier than, lighter than] capacity and volume [for example, full/empty, more than, less than, half, half full, quarter] time [for example, quicker, slower, earlier, later] Measure and begin to record the following: lengths and heights mass/weight capacity and volume time (hours, minutes, seconds) recognise and know the value of different denominations of coins and notes sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] . \square Recognise and use language relating to dates, including days of the week, weeks, months and years. \square Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.	Sufficient evidence shows the ability to: Recognise and name common 2-D and 3-D shapes, including: 2-D shapes [for example, rectangles (including squares), circles and triangles] 3-D shapes [for example, cuboids (including cubes), pyramids and spheres].	Sufficient evidence shows the ability to: Describe position, direction and movement, including whole, half, quarter and threequarter turns.

Year 1 Geometry and Measures

Measures

All aspects of measurement at the national standard are embedded.

Sufficient evidence shows the ability to:

Use knowledge of measures in solving problems of increasingly complexity.\square Solve more complex problems involving money and other measures including time.
\square Be able to apply knowledge of measures to other curriculum areas in practical activities.

Geometry - Properties of Shapes

All aspects of shape at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Compare and sort shapes using 1 criterionRecognise and name common 2-D and 3-D shapes, describing their properties using increasingly sophisticated mathematical vocabulary.Reason about and solve more complex problems relating to shapes and their properties.

Geometry - Position and Movement

All aspects of position and movement at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Apply knowledge of position to problem solving across the curriculum.
\square Solve more complex problems involving position and movement.

Year 2 Number and Place Value

	Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions
	Sufficient evidence shows the ability to: Count to and across 100, forwards or backwards, beginning with 0 or 1 , or from any given number. \square Count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s. - Count in steps of 10 within 100, starting from any number. \square Read and write numbers from 1 to 100 in numerals, and up to 20 in words (not necessarily spelled correctly). \square Use the place value of each digit to order numbers to 100. \square Know the number that is 1 more and 1 less than any number up to 100. \square Use the language of least. \square Identify and represent numbers using objects, structured apparatus and number lines. \square Use place value and number facts to solve simple problems.	Sufficient evidence shows the ability to: Recall and use addition and subtraction facts for all numbers up to 10 . - Add and subtract numbers mentally, including: 2 single-digit numbers, a number up to 20 and 1s. \square Add and subtract numbers using concrete objects, pictorial representations and the written columnar method including: a twodigit number and 1 , adding 3 single-digit numbers with a total up to 20. \square Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=). \square Solve missing number addition problems involving single-digit numbers. \square Solve simple 1 or 2 step problems with addition and subtraction. \square Show that addition can be done in any order (commutative).	Sufficient evidence shows the ability to: Recall multiplication facts for the 10 multiplication table and use them to derive division facts, and count in steps of 10 to answer questions. Recall and use doubling and halving facts for numbers up to double 10 and other significant doubles. Recognise odd and even numbers to 20 . Solve simple problems involving grouping and sharing, using objects, pictorial representations and arrays.	Sufficient evidence shows the ability to: Recognise, find and name a quarter as 1 of 4 equal parts of an object, shape or quantity. Begin to solve simple problems involving fractions.

Year 2 Number and Place Value

	Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions
	Sufficient evidence shows the ability to: Count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward and backward. Recognise the place value of each digit in a two-digit number (tens, ones). Identify, represent and estimate numbers using different representations, including the number line. Compare and order numbers from 0 up to 100; use <, > and = signs. Read and write numbers to at least 100 in numerals and in words. Use place value and number facts to solve problems.	Sufficient evidence shows the ability to: Solve problems with addition and subtraction: \square using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods. \square Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 . \square Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, two two-digit numbers. \square Add three one-digit numbers. \square Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. \square Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	Sufficient evidence shows the ability to: Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers. Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs. Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.	Sufficient evidence shows the ability to: Recognise, find, name and write fractions $1 / 2,1 / 3,1 / 4,2 / 4,3 / 4$ of a length, shape, set of objects or quantity. Write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.

Year 2 Number and Place Value

Number and Place Value

All aspects of number and place value at the national standard are

embedded.

Sufficient evidence shows the ability to:Demonstrate fluency and reasoning in counting forwards and backwards in steps of 2,5 and 10 including from different starting points and using numbers beyond 100.
\square Consistently use less than (<), equals (=) and greater than (>) signs correctly when comparing numbers and expressions.
\square Identify and represent numbers using different representations including more complex number lines.
\square Demonstrate reasoning about place value and number facts to solve more complex problems.

Addition and Subtraction

All aspects of addition and subtraction at the national standard are embedded.
Sufficient evidence shows the ability to:
\square Recall and use addition and subtraction facts to 20 fluently; derive and use related facts to 100 and beyond.Add and subtract numbers mentally using appropriate strategies, including: 2 2-digit numbers, adding /subtracting several single-digit numbers.
\square Add and subtract numbers using objects, pictorial representations and the written columnar method including: adding several 2 -digit numbers, subtracting 2-digit numbers, adding a 2-digit number to a 3-digit number, adding 3-digit numbers.

- Solve missing number problems involving a wider range of numbers.
\square Use addition and subtraction facts to solve more complex problems, such as 3 step problems.

Multiplication and Division

All aspects of multiplication and subtraction at the national standard are embedded.
Sufficient evidence shows the ability to:
\square Rapidly recall and use multiplication and division facts for the 2,5 and 10 multiplication tables and write mathematical
statements using the multiplication (\times),division (\div) and equals (=) signs.

Count in 3 s to solve multiplication and division problems for the 3 multiplication table.
\square Solve more complex problems involving multiplication and division in a range of contexts including measures.

Make connections between place value and multiplication/division by 10 and use known multiplication and division facts to derive others.

Fractions

All aspects of fractions at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Express more complex problems using fraction notation and solve them.

Year 2 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	Sufficient evidence shows the ability to: Measure and begin to record the following: lengths and heights mass/weight volume/capacity time. \square Recognise and know the value of different denominations of coins and notes. \square Begin to recognise and use the symbols for pounds ($£$) and pence (p). \square Combine amounts to make small values. \square Sequence the events of several days in chronological order using appropriate language. \square Tell the time to half past the hour; turn the hands of a geared clock to show these times; draw hands on a clock face to show o'clock times. \square Recognise and use language relating to dates, including days of the week, weeks, months and years. \square Know there are 7 days in a week. \square Know the name of the day before or after a given day. \square Solve simple measure problems in a practical context using standardised units.	Sufficient evidence shows the ability to: Recognise, name and describe the properties of common 2-D shapes including pentagons and hexagons. Recognise, name and describe the properties of common 3-D shapes including cones and spheres. Solve simple problems involving shapes.	Sufficient evidence shows the ability to: Describe position, directions and movement, including whole, half, quarter and three-quarter turns. Solve simple problems involving position and direction.	Sufficient evidence shows the ability to: Interpret and construct simple pictograms where the picture is worth 1 unit. Interpret simple tally charts and block diagrams. Ask and answer questions that require counting the number of objects in each category.

Year 2 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	Sufficient evidence shows the ability to: Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels. \square Compare and order lengths, mass, volume/capacity and record the results using >, < and =. \square Recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value \square Find different combinations of coins that equal the same amounts of money. \square Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change. \square Compare and sequence intervals of time. \square Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times. \square Know the number of minutes in an hour and the number of hours in a day.	Sufficient evidence shows the ability to: \square Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line. Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces. Identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]. Compare and sort common 2D and 3-D shapes and everyday objects.	Sufficient evidence shows the ability to: Order and arrange combinations of mathematical objects in patterns and sequences. Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anticlockwise).	Sufficient evidence shows the ability to: \square Interpret and construct simple pictograms, tally charts, block diagrams and simple tables. \square Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity. \square Ask and answer questions about totalling and comparing categorical data.

Year 2 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	All aspects of measurement at the national standard are embedded.	All aspects of shape at the national standard are embedded.	All aspects of position and movement at the national standard are embedded.	All aspects of statistics at the national standard are embedded.
	Sufficient evidence shows the ability to:			
	\square Find all possible combinations of coins to equal a given amount or how to pay a given amount using the fewest possible number of coins.	- Compare and sort common 2-D and $3-D$ shapes and common objects, using more than 1 criterion, identifying and describing their properties.	\square Order and arrange combinations of mathematical objects in more complex patterns and sequences. \square Solve more complex problems involving position and direction.	\square Interpret and construct pictograms (where the symbols show many to one correspondence), block diagrams (where the scale is divided into $2 s$ or 5 s) and more complex tables
	an hour and 24 hours in a day and use these facts to solve problems. \square Tell and write the time to 5 minutes and draw hands on a clock face to show these times. \square Solve more complex problems involving, money and other measures, including time. \square Reason about multiplicative relationships between specific measured quantities, drawing on knowledge of 2, 5 and 10 tables and knowledge of fractions.	\square Reason about and solve more complex problems involving shapes and their properties.		Use more complex charts to ask and answer questions by reading from the chart the number of objects in each category, sorting the categories by quantity, totalling and comparing categorical data.

Year 3 Number and Place Value

	Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions
	Sufficient evidence shows the ability to: Count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward and backward. \square Recognise the place value of each digit in a two-digit number (tens, ones). \square Identify, represent and estimate numbers using different representations, including the number line. - Compare and order numbers from 0 up to 100; use and = signs. \square Read and write numbers to at least 100 in numerals and in words. \square Use place value and number facts to solve problems.	Sufficient evidence shows the ability to: \square Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods. \square Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100. \square Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and ten, two two-digit numbers, adding three one-digit numbers show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. \square Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	Sufficient evidence shows the ability to: Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers. Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs. Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.	Sufficient evidence shows the ability to: Recognise, find, name and write fractions $1 / 2,1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity. - Write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.

Year 3 Number and Place Value

	Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions
	Sufficient evidence shows the ability to: \square Count from 0 in multiples of 4,8 , 50 and 100 ; find 10 or 100 more or less than a given number. \square Recognise the place value of each digit in a three-digit number (hundreds, tens, ones). \square Compare and order numbers up to 1000. \square Identify, represent and estimate numbers using different representations. \square Read and write numbers up to 1000 in numerals and in words. \square Solve number problems and practical problems involving these ideas.	Sufficient evidence shows the ability to: Add and subtract numbers mentally, including: a three-digit number and ones, a three-digit number and tens, a three-digit number and hundreds. \square Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction. Estimate the answer to a calculation and use inverse operations to check answers. Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.	Sufficient evidence shows the ability to: Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods. \square Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to mobjects.	Sufficient evidence shows the ability to: Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10. \square Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators. \square Recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators. \square Recognise and show, using diagrams, equivalent fractions with small denominator. \square Add and subtract fractions with the same denominator within one whole [for example, 5/7 + 1/7 = 6/7]. \square Compare and order unit fractions, and fractions with the same denominators. \square Solve problems that involve all of the above.

Year 3 Number and Place Value

Number and Place Value

All aspects of number and place value at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Show fluency in the use of number facts and are able to make generalisations based on these to find unknown facts.
\square Demonstrate a secure understanding of place value and have fluency when working with numbers up to and above 1000.
\square Apply place value and number facts knowledge to solving problems involving number and place value in a range of familiar and unfamiliar contexts.

Addition and Subtraction

All aspects of addition and subtraction at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Demonstrate rapid recall of
number facts which they can use to generate new unknown facts.

U Use rapid recall of number facts to support their repertoire of calculation strategies, both mental and written.
\square Use a range of efficient written and mental calculation strategies to use in calculation.
\square Draw on their repertoire of calculation strategies in problem solving, explaining their choices and communicating their reasoning.
\square Communicate their ideas as well as following a reasoned argument.

Multiplication and Division

All aspects of multiplication and subtraction at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Demonstrate rapid recall of multiplication and division facts and the ability to use these to derive related facts to solve problems.

Show a repertoire of written and mental calculation methods to solve problems that involve multiplication and division. They are able to communicate their reasoning and explain their thinking.

- Apply their understanding of multiplication and division to a wider range of problem solving contexts such as shape and measures.

Fractions

All aspects of fractions at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Apply knowledge of fractions to solving problems of increasingly complexity.
\square Show understanding of the connections between areas of learning in fractions such as the ability to recognise equivalency and links to decimal place value.
\square Use fractions in problem solving, explaining reasoning in problems involving measures shape and statistics.

Year 3 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	Sufficient evidence shows the ability to: \square Choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels. \square Compare and order lengths, mass, volume/capacity and record the results using >, < and $=$. \square Recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value. \square Find different combinations of coins that equal the same amounts of money. \square Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change. \square Compare and sequence intervals of time and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times know the number of minutes in an hour and the number of hours in a day.	Sufficient evidence shows the ability to: \square Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line. Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces. Identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]. Compare and sort common 2-D and 3-D shapes and everyday objects.	Sufficient evidence shows the ability to: \square Order and arrange combinations of mathematical objects in patterns and sequences. Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise).	Sufficient evidence shows the ability to: \square Interpret and construct simple pictograms, tally charts, block diagrams and simple tables. \square Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity. \square Ask and answer questions about totalling and comparing categorical data.

Year 3 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	Sufficient evidence shows the ability to: Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$). \square Measure the perimeter of simple 2-D shapes. \square Add and subtract amounts of money to give change, using both $£$ and p in practical contexts. \square Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks. \square Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight. \square Know the number of seconds in a minute and the number of days in each month, year and leap year. \square Compare durations of events [for example to calculate the time taken by particular events or tasks].	Sufficient evidence shows the ability to: \square Draw 2-D shapes and make 3D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them. \square Recognise angles as a property of shape or a description of a turn. \square Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle. \square Identify horizontal and vertical lines and pairs of perpendicular and parallel lines.	Sufficient evidence shows the ability to: Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anticlockwise).	Sufficient evidence shows the ability to: Interpret and present data using bar charts, pictograms and tables solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?']. Use information presented in scaled bar charts and pictograms and tables.

Year 3 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	All aspects of measurement at the national standard are embedded. Sufficient evidence shows the ability to:	All aspects of shape at the national standard are embedded. Sufficient evidence shows the ability to:	All aspects of position and movement at the national standard are embedded.	All aspects of statistics at the national standard are embedded.
			Sufficient evidence shows the ability to:	Sufficient evidence shows the ability to:
	\square Use a wide range of tools when working with measures and can move more fluently between different units.	\square Apply knowledge and understanding of the properties of shapes to a wider range of regular and irregular 2D and 3D shapes.	- Apply knowledge of position and movement to solving problems. Be able to use mathematical	Interpret data to answer questions related to problems across the curriculum.
	Use understanding of other areas of the curriculum to solve problems and calculations	Work with an increasing level of accuracy describing the properties of shapes.	vocabulary to describe the position and movement of a given unit.	- Interpret data and read scales with increased accuracy with different divisions using knowledge of number.
	multiplication. Apply their understanding to solve problems of increasing complexity and can reason about their choices.	\square Apply their knowledge and understanding to solving problems of increasingly complexity as well as communicating their reasoning.		\square Pose their own questions and formulate hypothesis and make decisions about how to collect data to solve problems. Reason and explain their decisions.

Year 4 Number and Place Value

	Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions
	Sufficient evidence shows the ability to: Count from 0 in multiples of 4, 8, 50 and 100; find 10 or 100 more or less than a given number. \square Recognise the place value of each digit in a three-digit number (hundreds, tens, ones). \square Compare and order numbers up to 1000. \square Identify, represent and estimate numbers using different representations. \square Read and write numbers up to 1000 in numerals and in words. \square Solve number problems and practical problems involving these ideas.	Sufficient evidence shows the ability to: Add and subtract numbers mentally, including: a three-digit number and ones, a three-digit number and tens, a three-digit number and hundreds. \square Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction. \square Estimate the answer to a calculation and use inverse operations to check answers. \square Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.	Sufficient evidence shows the ability to: Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables. \square Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for twodigit numbers times one-digit numbers, using mental and progressing to formal written methods. \square Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.	Sufficient evidence shows the ability to: Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 . \square Recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators. \square Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators. \square Recognise and show, using diagrams, equivalent fractions with small denominator. \square Add and subtract fractions with the same denominator within one whole [for example, 5/7 + $1 / 7=6 / 7]$. \square Compare and order unit fractions, and fractions with the same denominators. \square Solve problems that involve all of the above.

Year 4 Number and Place Value

Number and Place Value

Sufficient evidence shows the ability to:
\square Count in multiples of $6,7,9,25$ and 1000 find 1000 more or less than a given number.
Count backwards through zero to include negative numbers.
\square Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones).
\square Order and compare numbers beyond 1000 .
\square Identify, represent and estimate numbers using different representations.

- Round any number to the nearest 10,100 or 1000.
- Solve number and practical problems that involve all of the above and with increasingly large positive numbers.
- Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.

Addition and Subtraction
Sufficient evidence shows the ability to:
\square Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.
\square Estimate and use inverse operations to check answers to a calculation.

- Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

Multiplication and Division
Sufficient evidence shows the ability to:
\square Recall multiplication and division
facts for multiplication tables up to 12×12.
\square Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers.
\square Recognise and use factor pairs and commutativity in mental calculations.
\square Multiply two-digit and three-digit numbers by a one-digit number using formal written layout.
\square Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Fractions
Sufficient evidence shows the ability to:
\square Recognise and show, using diagrams, families of common equivalent fractions count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.
\square Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number.
\square Add and subtract fractions with the same denominator.
\square Recognise and write decimal equivalents of any number of tenths or hundredths.
\square Recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$.
\square Find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.
Round decimals with one decimal place to the nearest whole number.
\square Compare numbers with the same number of decimal places up to two decimal places.

- Solve simple measure and money problems involving fractions and decimals to two decimal places.

Year 4 Number and Place Value

Number and Place Value

All aspects of number and place value at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Demonstrate very good understanding of place value and is able to apply this to working with larger numbers/decimals.Demonstrate confidence to use knowledge of place value in solving problems.
\square Apply their understanding to solving increasingly complex problems, is able to reason and explain their thinking.

Addition and Subtraction

All aspects of addition and subtraction at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Demonstrate rapid recall of number facts and is able to use these fluently to generalise to obtain new facts.
\square Show a wide repertoire of reliable and efficient of calculation strategies, both written and mental, that they are able to apply when solving problems.Make choices regarding choice of strategies and explain reasoning.
\square Solve problems of increasingly complexity using a range of strategies and is able to communicate their reasoning.

Multiplication and Division

All aspects of multiplication and subtraction at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Demonstrate rapid and fluent recall of all x facts to 12×12 and is able to use their knowledge to generate new facts.
\square Show a clear understanding of the different structures of multiplication and division and the related vocabulary.

- Demonstrate a wide repertoire of reliable and efficient of calculation strategies, both written and mental, that they are able to apply when solving problems.
\square Solve problems of increasingly complexity using a range of strategies and is able to communicate their reasoning.

Fractions

All aspects of fractions at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Apply knowledge of fractions to problems involving measures and shapes.

- Apply links with division to solving increasingly complex problems.
\square Show a good understanding of the connections between fractions and decimals and is able to use their knowledge to translate between the two.
\square Apply their knowledge of fractions to problems of increasing complexity and to explain their reasoning and thinking.

Year 4 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	Sufficient evidence shows the ability to: Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (l/ml). \square Measure the perimeter of simple 2-D shapes. \square Add and subtract amounts of money to give change, using both $£$ and p in practical contexts. \square Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks. \square Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight. \square Know the number of seconds in a minute and the number of days in each month, year and leap year. \square Compare durations of events [for example to calculate the time taken by particular events or tasks].	Sufficient evidence shows the ability to: Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them. \square Recognise angles as a property of shape or a description of a turn. \square Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle. \square Identify horizontal and vertical lines and pairs of perpendicular and parallel lines.	Sufficient evidence shows the ability to: Use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise).	Sufficient evidence shows the ability to: Interpret and present data using bar charts, pictograms and tables solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.

Year 4 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	Sufficient evidence shows the ability to: \square Convert between different units of measure [for example, kilometre to metre; hour to minute]. \square Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres. \square Find the area of rectilinear shapes by counting squares. \square Estimate, compare and calculate different measures, including money in pounds and pence. \square Read, write and convert time between analogue and digital 12and 24 -hour clocks. \square Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	Sufficient evidence shows the ability to: \square Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes. \square Identify acute and obtuse angles and compare and order angles up to two right angles by size. \square Identify lines of symmetry in 2-D shapes presented in different orientations. \square Complete a simple symmetric figure with respect to a specific line of symmetry.	Sufficient evidence shows the ability to: Describe positions on a 2-D grid as coordinates in the first quadrant. Describe movements between positions as translations of a given unit to the left/right and up/down. Plot specified points and draw sides to complete a given polygon.	Sufficient evidence shows the ability to: Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.

Year 4 Geometry and Measures

Year 5 Number and Place Value

	Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions
	Sufficient evidence shows the ability to: Count in multiples of 6, 7, 9, 25 and 1000. \square Find 1000 more or less than a given number. \square Count backwards through zero to include negative numbers. $\square \quad$ Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones). \square Order and compare numbers beyond 1000. \square Identify, represent and estimate numbers using different representations. \square Round any number to the nearest 10, 100 or 1000. \square Solve number and practical problems that involve all of the above and with increasingly large positive numbers. \square Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	Sufficient evidence shows the ability to: Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate. \square Estimate and use inverse operations to check answers to a calculation. \square Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Sufficient evidence shows the ability to: \square Recall multiplication and division facts for multiplication tables up to 12×12. \square Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers. \square Recognise and use factor pairs and commutativity in mental calculations. \square Multiply two-digit and three-digit numbers by a one-digit number using formal written layout. \square Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects.	Sufficient evidence shows the ability to: \square Recognise and show, using diagrams, families of common equivalent fractions. \square Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. - Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number. \square Add and subtract fractions with the same denominator. \square Recognise and write decimal equivalents of any number of tenths or hundredths. \square Recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$. \square Find the effect of dividing a one- or twodigit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths. \square Round decimals with one decimal place to the nearest whole number. \square Compare numbers with the same number of decimal places up to two decimal places. \square Solve simple measure and money problems involving fractions and decimals to two decimal places.

Year 5 Number and Place Value

	Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions
	Sufficient evidence shows the ability to: \square Read, write, order and compare numbers to at least 1000000 and determine the value of each digit count forwards or backwards in steps of powers of 10 for any given number up to 1000000. \square Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero. \square Round any number up to - 1000000 to the nearest 10, 100, 1000, 10000 and 100 000. \square Solve number problems and practical problems that involve all of the above. \square Read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	Sufficient evidence shows the ability to: \square Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). \square Add and subtract numbers mentally with increasingly large numbers. \square Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy. \square Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Sufficient evidence shows the ability to: Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. \square Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers. \square Establish whether a number up to 100 is prime \& recall prime numbers up to 19. \square Multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers. \square Multiply and divide numbers mentally drawing upon known facts. \square Divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret remainders appropriately for the context \square Multiply and divide whole numbers and those involving decimals by 10,100 \&1000. \square Recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3). \square Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes. \square Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. \square Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	Sufficient evidence shows the ability to: Compare and order fractions whose denominators are all multiples of the same number. \square Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. - Recognise mixed numbers and improper fractions and convert from one form to the other \& write mathematical statements >1 as a mixed number $[2 / 5+4 / 5=6 / 5=11 / 5]$. \square Add and subtract fractions with the same denominator and denominators that are multiples of the same number. - Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams. \square Read and write decimal numbers as fractions [for example, $0.71=71 / 100$]. - Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents. - Round decimals with two decimal places to the nearest whole number and to one decimal place. \square Read, write, order \& compare numbers with up to three decimal places. \square Solve problems involving number up to three decimal places. \square Recognise the percent symbol (\%) and understand that percent relates to 'number of parts per hundred', write percentages as a fraction with denominator $100, \&$ as a decimal. - Solve problems which require knowing percent \& decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25 .

Year 5 Number and Place Value

Number and Place Value

All aspects of number and place value at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Demonstrate rapid recall of number facts and is able to use these fluently to generalise to obtain new facts using place value.
\square Show very good understanding of place value and is able to apply this to working with larger numbers/decimals and in solving problems.
\square Apply their understanding to solve increasingly complex problems, and is able to reason and explain their thinking.

Addition and Subtraction
All aspects of addition and subtraction at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Demonstrate rapid recall of number facts and is able to use these fluently to generalise to obtain new facts.
\square Show a wide repertoire of reliable and efficient of calculation strategies, both written and mental, that they are able to apply when solving problems.
Make choices regarding choice of strategies and explain reasoning.
\square Solve problems of increasingly complexity using a range of strategies and is able to communicate their reasoning.
\square Explain why different methods give the same result.
\square Demonstrate creative thinking when problem solving, and is able to justify and prove.

Multiplication and Division
All aspects of multiplication and subtraction at the national standard are embedded.
Sufficient evidence shows the ability to:
\square Demonstrate rapid and fluent recall of all x facts to 12×12 and is able to use their knowledge to generate new facts and when working with larger numbers.
\square Apply knowledge of factors, multiples, prime number, squares and commutativity to solving mental calculations of more complex problems.

- Show a clear understanding of the different structures of multiplication and division and the related vocabulary and is able to apply this to solving increasingly complex problems.
- Apply knowledge of the inverse operation and the links between division and multiplication to solving problems.
\square Demonstrate a wide repertoire of reliable and efficient of calculation strategies, both written and mental, that they are able to apply when solving problems.
\square Solve problems of increasingly complexity using a range of strategies and is able to communicate their reasoning.

Fractions

All aspects of fractions at the national standard are embedded.

Sufficient evidence shows the ability to:
\square Apply knowledge of fractions to problems involving measures and shapes.
\square Use their knowledge of decimals in problem involving measure to work with increased accuracy.
\square Show a very good understanding of the connections between fractions decimals and percentages and is able to use their knowledge to translate between the three.
\square Apply their knowledge of fractions, decimals and percentages to problems of increasing complexity and to explain their reasoning and thinking.

- Apply links with division to solving increasingly complex problems.

Year 5 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	Sufficient evidence shows the ability to: Convert between different units of measure [for example, kilometre to metre; hour to minute]. \square Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres. \square Find the area of rectilinear shapes by counting square. \square Estimate, compare and calculate different measures, including money in pounds and pence. \square Read, write and convert time between analogue and digital 12and 24 -hour clocks. \square Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	Sufficient evidence shows the ability to: Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes. Identify acute and obtuse angles and compare and order angles up to two right angles by size. Identify lines of symmetry in 2D shapes presented in different orientations. Complete a simple symmetric figure with respect to a specific line of symmetry.	Sufficient evidence shows the ability to: Describe positions on a 2-D grid as coordinates in the first quadrant \square Describe movements between positions as translations of a given unit to the left/right and up/down. \square Plot specified points and draw sides to complete a given polygon.	Sufficient evidence shows the ability to: Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. \square Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.

Year 5 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
O U U ® X	Sufficient evidence shows the ability to: \square Convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre \& millilitre). \square Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints. \square Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres. \square Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes. \square Estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water]. \square Solve problems involving converting between units of time. \square Use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.	Sufficient evidence shows the ability to: Identify 3-D shapes, including cubes and other cuboids, from 2-D representations. \square Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles. \square Draw given angles, and measure them in degrees (${ }^{\circ}$). \square Identify: angles at a point and one whole turn (total 360°) angles at a point on a straight line \& $1 / 2$ a turn (total 180°) and other multiples of 90°. \square Use the properties of rectangles to deduce related facts and find missing lengths and angles distinguish between regular and irregular polygons based on reasoning about equal sides and angles.	Sufficient evidence shows the ability to: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	Sufficient evidence shows the ability to: \square Solve comparison, sum and difference problems using information presented in a line graph. - Complete, read and interpret information in tables, including timetables.

Year 5 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	All aspects of measurement at the national standard are embedded. Sufficient evidence shows the ability to: Apply knowledge of other areas of the curriculum to their understanding of and problem solving with measures. E.g. squares, cubes, fractions, multiplication decimals. \square Convert fluently and efficiently between different units of measures and be able to reason about the multiplicative relationship between related measures. \square Use their understanding of the concepts related to measures to solve increasingly complex problems. \square Communicate reasoning and talk about mathematics using sophisticated mathematical language. \square Apply knowledge of measures to other areas of the curriculum such as science.	All aspects of shape at the national standard are embedded. Sufficient evidence shows the ability to: Sort and classify shapes using a wide range of criterion using increasingly sophisticated mathematically appropriate vocabulary. \square Creatively apply knowledge of shapes to solving problems with increasing complexity and be able to justify reasoning and communicate their thinking. \square Make links and connections with other areas of the curriculum and be able to generalise their understanding.	All aspects of position and movement at the national standard are embedded. Sufficient evidence shows the ability to: Solve increasingly complex problems involving position and movement. Apply knowledge and understanding of position and movement to other curriculum areas such as geography and science.	All aspects of statistics at the national standard are embedded. Sufficient evidence shows the ability to: Use knowledge of data handling to pose hypothesis and answer questions through the analysis and interpretation of data. \square Draw conclusions based on data and be able to communicate reasoning. Be able to look for alternative explanations and hypothesis. \square Use understanding of statistics in other curriculum areas.

Year 6 Number and Place Value

	Number and Place Value	Addition, Subtraction, Multiplication and Division	Fractions	Ratio and Proportion	Algebra
n 0 0 0 3 0 0 00 1 1 3 3	Sufficient evidence shows the ability to: \square Read, write, order and compare numbers to at least 1000000 and determine the value of each digit. \square Count forwards or backwards in steps of powers of 10 for any given number up to 1000000. \square Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero. \square Round any number up to 1000000 to the nearest $10,100,1000$, 10000 and 100000. \square Solve number problems and practical problems that involve all of the above. \square Read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	Sufficient evidence shows the ability to: - Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). \square Add and subtract numbers mentally with increasingly large number. \square Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy. \square Solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why. \square Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. \square Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers. - Establish whether a number up to 100 is prime, recall prime numbers up to 19. \square Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers. \square Multiply and divide numbers mentally drawing upon known facts. \square Divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret remainders appropriately for the context. \square Multiply and divide whole numbers and those involving decimals by 10,100 \& 1000.	Sufficient evidence shows the ability to: \square Compare and order fractions whose denominators are all multiples of the same number. \square Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [e.g.: 2/5 $+4 / 5=6 / 5=11 / 5]$. \square Add and subtract fractions with the same denominator and denominators that are multiples of the same number. Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams. \square Read and write decimal numbers as fractions [for example, $0.71=10071$]. \square Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents. \square Round decimals with two decimal places to the nearest whole number and to one decimal place. \square Read, write, order and compare numbers with up to three decimal places. \square Solve problems involving number up to three decimal places.	Sufficient evidence shows the ability to: \square Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal. Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25 .	Sufficient evidence shows the ability to: \square Use simple formula to represent calculations such as perimeter and area of different shapes. \square Use sequencing when working on shape, measures and pattern activities. \square Solve problems including missing number problems using addition, subtraction, multiplication and division facts. \square Demonstrate a secure understanding of the inverse relationship when applied to calculations involving two variables.

Year 6 Number and Place Value

	Number and Place Value	Addition, Subtraction, Multiplication and Division	Fractions	Ratio and Proportion	Algebra
	Sufficient evidence shows the ability to: \square Read, write, order and compare numbers up to 10000000 and determine the value of each digit. \square Round any whole number to a required degree of accuracy. \square Use negative numbers in context, and calculate intervals across zero. \square Solve number and practical problems that involve all of the above.	Sufficient evidence shows the ability to: Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. \square Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. $\square \quad$ Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context. - Perform mental calculations, including with mixed operations and large numbers. \square Identify common factors, common multiples and prime numbers. \square Use their knowledge of the order of operations to carry out calculations involving the four operations. \square Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Sufficient evidence shows the ability to: Use common factors to simplify fractions; use common multiples to express fractions in the same denomination. Compare and order fractions, including fractions >1. - Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions. - Multiply simple pairs of proper fractions, writing the answer in its simplest form. [For example, $1 / 2 \times$ $1 / 2=1 / 8]$. - Divide proper fractions by whole numbers. $1 / 3 \div 2=1 / 6$ - Associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [e.g. 3/8]. - Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places. - Multiply one-digit numbers with up to two decimal places by whole numbers.] Use written division methods in cases where the answer has up to two decimal places. - Solve problems which require answers to be rounded to specified degrees of accuracy. - Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.	Sufficient evidence shows the ability to: \square Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts. \square Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison. \square Solve problems involving similar shapes where the scale factor is known or can be found. - Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.	Sufficient evidence shows the ability to: Use simple formulae. Generate and describe linear number sequences. Express missing number problems algebraically. Find pairs of numbers that satisfy an equation with two unknowns. Enumerate possibilities of combinations of two variables.

Year 6 Number and Place Value

	Number and Place Value	Addition, Subtraction, Multiplication and Division	Fractions	Ratio and Proportion	Algebra
	All aspects of number and place value at the national standard are embedded. Sufficient evidence shows the ability to: \square Demonstrate rapid recall of number facts and is able to use these fluently to generalise to obtain new facts using place value. \square Show very good understanding of place value and is able to apply this to working with larger numbers/decimals and in solving problems. \square Apply their understanding to solving increasingly complex problems, is able to reason and explain their thinking.	All aspects of addition, subtraction, multiplication and division at the national standard are embedded. Sufficient evidence shows the ability to: Demonstrate rapid recall of number facts and is able to use these fluently to generalise to obtain new facts. \square Show a wide repertoire of reliable and efficient of calculation strategies, both written and mental, that they are able to apply when solving problems. \square Make choices regarding choice of strategies and explain reasoning. - Solve problems of increasingly complexity using a range of strategies and is able to communicate their reasoning. \square Explain why different methods give the same result - Think creatively when problem solving and is able to justify \& prove. \square Show rapid and fluent recall of all x facts to 12×12 and is able to use their knowledge to generate new facts and when working with larger numbers. - Apply knowledge of factors, multiples, prime number, squares and commutativity to solving mental calculations of more complex problems. - Show a clear understanding of the different structures of multiplication and division and related vocabulary and is able to apply this to solving increasingly complex problems. \square Apply the knowledge of the inverse operation and the links between division and multiplication to solving problems.	All aspects of fractions at the national standard are embedded. Sufficient evidence shows the ability to: \square Apply knowledge of fractions to problems involving measures and shapes. \square Use their knowledge of decimals in problem involving measure to work with increased accuracy. \square Demonstrate a very good understanding of the connections between fractions decimals and percentages and is able to use their knowledge to translate between the three. \square Apply their knowledge of fractions, decimals and percentages to problems of increasing complexity and to explain their reasoning and thinking.	Sufficient evidence shows the ability to: Demonstrate a very good understanding of the connections between fractions, decimals and percentages, ratio and proportion and is able to use their knowledge to translate between the three. \square Apply their knowledge of ratio and proportion to problems of increasing complexity and to explain their reasoning and thinking.	Sufficient evidence shows the ability to: Use algebraic representation to illustrate relationships and patterns. \square Apply understanding of equivalence in calculation to solve problems with unknowns and more than one possibility. Use algebra to prove relationships and patterns. \square Explain the meaning of the mathematical notation.

Year 6 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	Sufficient evidence shows the ability to: Convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre). \square Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints. \square Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres. \square Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m 2) and estimate the area of irregular shapes. \square Estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water]. \square Solve problems involving converting between units of time. \square Use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.	Sufficient evidence shows the ability to: Identify 3-D shapes, including cubes and other cuboids, from 2-D representations. \square Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles. \square Draw given angles, and measure them in degrees $\left({ }^{\circ}\right)$. \square Identify: angles at a point and one whole turn (total 360°) angles at a point on a straight line and 21 a turn (total 180°) other multiples of 90°. \square Use the properties of rectangles to deduce related facts and find missing lengths and angles. \square Distinguish between regular and irregular polygons based on reasoning about equal sides and angles.	Sufficient evidence shows the ability to: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	Sufficient evidence shows the ability to: Solve comparison, sum and difference problems using information presented in a line graph. Complete, read and interpret information in tables, including timetables.

Year 6 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	Sufficient evidence shows the ability to: \square Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate. \square Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places. \square Convert between miles and kilometres. \square Recognise that shapes with the same areas can have different perimeters and vice versa. \square Recognise when it is possible to use formulae for area and volume of shapes. \square Calculate the area of parallelograms and triangles. \square Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm3) and cubic metres (m3), and extending to other units [for example, mm3 and km3].	Sufficient evidence shows the ability to: \square Draw 2-D shapes using given dimensions and angles. \square Recognise, describe and build simple 3-D shapes, including making nets. \square Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons. \square Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.	Sufficient evidence shows the ability to: Describe positions on the full coordinate grid (all four quadrants). Draw and translate simple shapes on the coordinate plane, and reflect them in the axes.	Sufficient evidence shows the ability to: Interpret and construct pie charts and line graphs and use these to solve problems. Calculate and interpret the mean as an average.

Year 6 Geometry and Measures

	Measures	Geometry - Properties of Shapes	Geometry - Position and Movement	Statistics
	All aspects of measurement at the national standard are embedded. Sufficient evidence shows the ability to: Apply knowledge of other areas of the curriculum to their understanding of and problem solving with measures. E.g. squares, cubes, fractions, multiplication decimals. \square Convert fluently and efficiently between different units of measures and be able to reason about the multiplicative relationship between related measures. \square Use their understanding of the concepts related to measures to solve increasingly complex problems. \square Communicate reasoning and talk about mathematics using sophisticated mathematical language. \square Apply knowledge of measures to other areas of the curriculum such as science.	All aspects of shape at the national standard are embedded. Sufficient evidence shows the ability to: Sort and classify shapes using a wide range of criterion using increasingly sophisticated mathematically appropriate vocabulary. \square Creatively apply knowledge of shapes to solving problems with increasing complexity and be able to justify reasoning and communicate their thinking. \square Make links and connections with other areas of the curriculum and be able to generalise their understanding.	All aspects of position and movement at the national standard are embedded. Sufficient evidence shows the ability to: Solve increasingly complex problems involving position and movement. Apply knowledge and understanding of position and movement to other curriculum areas such as geography and science.	All aspects of statistics at the national standard are embedded. Sufficient evidence shows the ability to: Use knowledge of data handling to pose hypothesis and answer questions through the analysis and interpretation of data. Draw conclusions based on data and be able to communicate reasoning. Be able to look for alternative explanations and hypothesis. Use understanding of statistics in other curriculum areas.

